A parametric study has been carried out to elucidate the characteristics of flow past a square cylinder inclined with respect to the main flow in the laminar flow regime. Reynolds number and angle of incidence are the key parameters which determine the flow characteristics. Location of separation point is greatly affected by angle of incidence, thus determining the flow field around the square cylinder. The critical Reynolds number for periodic vortex shedding at each angle of incidence considered is obtained by using Stuart–Landau equation. Attempt is made to classify the related flow patterns from a topological point of view, resulting in three distinct patterns in total. A comprehensive analysis of the effects of Reynolds number and angle of incidence on flow-induced forces on the square cylinder is presented. Collecting all the results obtained, contour diagrams of force and moment coefficients, Strouhal number, rms of lift-coefficient fluctuation, as well as a flow-pattern diagram are proposed for the ranges of the two parameters considered in the current investigation. Finally, a Floquet stability analysis is presented to detect the onset of the secondary instability leading to three-dimensional flow. The proposed diagrams and the Floquet stability analysis shed light on better physical understanding of the flow past a square cylinder, which should be useful in many engineering applications.

1.
M.
Sarioglu
,
Y. E.
Akansu
, and
T.
Yavuz
, “
Control of flow around square cylinders at incidence by using a rod
,”
AIAA J.
43
,
1419
(
2005
).
2.
J. -Y.
Hwang
,
K. -S.
Yang
, and
S. -H.
Sun
, “
Reduction of flow-induced forces on a circular cylinder using a detached splitter plate
,”
Phys. Fluids
15
,
2433
(
2003
).
3.
D. S.
Park
, “
Theoretical analysis of feedback control of Kármán vortex shedding at slightly supercritical Reynolds numbers
,”
Eur. J. Mech. B/Fluids
13
,
387
(
1994
).
4.
M.
Schumm
,
E.
Berger
, and
P. A.
Monkewitz
, “
Self-excited oscillations in the wake of two-dimensional bluff bodies and their control
,”
J. Fluid Mech.
271
,
17
(
1994
).
5.
J. T.
Stuart
, “
Nonlinear stability theory
,”
Annu. Rev. Fluid Mech.
3
,
347
(
1971
).
6.
P. A.
Monkewitz
,
E.
Berger
, and
M.
Schumm
, “
The nonlinear stability of spatially inhomogeneous shear flows, including the effect of feedback
,”
Eur. J. Mech. B/Fluids
10
,
295
(
1991
).
7.
A. E.
Perry
,
M. S.
Chong
, and
T. T.
Lim
, “
The vortex-shedding process behind two-dimensional bluff bodies
,”
J. Fluid Mech.
116
,
77
(
1982
).
8.
A. S.
Grove
,
F. H.
Shair
,
E. E.
Petersen
, and
A.
Acrivos
, “
An experimental investigation of the steady separated flow past a circular cylinder
,”
J. Fluid Mech.
19
,
60
(
1964
).
9.
A.
Acrivos
,
L. G.
Leal
,
D. D.
Snowden
, and
F.
Pan
, “
Further experiments on steady separated flows past bluff objects
,”
J. Fluid Mech.
34
,
25
(
1968
).
10.
F. H.
Shair
,
A. S.
Grove
,
E. E.
Petersen
, and
A.
Acrivos
, “
The effect of confining walls on the stability of the steady wake behind a circular cylinder
,”
J. Fluid Mech.
17
,
546
(
1963
).
11.
M.
Coutanceau
and
R.
Bouard
, “
Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow
,”
J. Fluid Mech.
79
,
231
(
1977
).
12.
M.
Provansal
,
C.
Mathis
, and
L.
Boyer
, “
Bénard–von Kármán instability: transient and forced regimes
,”
J. Fluid Mech.
182
,
1
(
1987
).
13.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
(
1996
).
14.
T.
Igarashi
, “
Characteristics of the flow around a square prism
,”
Bull. JSME
27
,
1858
(
1984
).
15.
A.
Sohankar
,
C.
Norberg
, and
L.
Davidson
, “
Low-Reynolds-number flow around a square cylinder at incidence: Study of blockage, onset of vortex shedding and outlet boundary condition
,”
Int. J. Numer. Methods Fluids
26
,
39
(
1998
).
16.
T. G.
Zaki
,
M.
Sen
, and
M.
Gad-el-Hak
, “
Numerical and experimental investigation of flow past a freely rotatable square cylinder
,”
J. Fluid Struct.
8
,
555
(
1994
).
17.
J.
Robichaux
,
S.
Balachandar
, and
S. P.
Vanka
, “
Three-dimensional Floquet instability of the wake of square cylinder
,”
Phys. Fluids
11
,
560
(
1999
).
18.
D. A.
Lyn
,
S.
Einav
,
W.
Rodi
, and
J. -H.
Park
, “
A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder
,”
J. Fluid Mech.
304
,
285
(
1995
).
19.
A.
Okajima
,
D.
Yi
,
A.
Sakuda
, and
T.
Nakano
, “
Numerical study of blockage effects on aerodynamic characteristics of an oscillating rectangular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
67–68
,
91
(
1997
).
20.
A.
Sharma
and
V.
Eswaran
, “
Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime
,”
Numer. Heat Transfer, Part A
45
,
247
(
2004
).
21.
T.
Igarashi
, “
Heat transfer from a square prism to an air stream
,”
Int. J. Heat Mass Transfer
28
,
175
(
1985
).
22.
J. M.
Chen
and
C. -H.
Liu
, “
Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream
,”
Int. J. Heat Fluid Flow
20
,
592
(
1999
).
23.
C.
Norberg
, “
Flow around rectangular cylinders: Pressure forces and wake frequencies
,”
J. Wind Eng. Ind. Aerodyn.
49
,
187
(
1993
).
24.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
(
2001
).
25.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
(
1985
).
26.
K. -S.
Yang
and
J. H.
Ferziger
, “
Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid-scale model
,”
AIAA J.
31
,
1406
(
1993
).
27.
D. -H.
Kim
,
K. -S.
Yang
, and
M.
Senda
, “
Large eddy simulation of turbulent flow past a square cylinder confined in a channel
,”
Comput. Fluids
33
,
81
(
2004
).
28.
A. K.
De
and
A.
Dalal
, “
Numerical simulation of unconfined flow past a triangular cylinder
,”
Int. J. Numer. Methods Fluids
52
,
801
(
2006
).
29.
H. M.
Blackburn
and
J. M.
Lopez
, “
On three-dimensional quasiperiodic Floquet instabilities of two-dimensional bluff body wakes
,”
Phys. Fluids
15
,
L57
(
2003
).
30.
G. J.
Sheard
,
M. J.
Fitzgerald
, and
K.
Ryan
, “
Cylinders with square cross-section: Wake instabilities with incidence angle variation
,”
J. Fluid Mech.
630
,
43
(
2009
).
31.
B. S.
Carmo
,
S. J.
Sherwin
,
P. W.
Bearman
, and
R. H. J.
Willden
, “
Wake transition in the flow around two circular cylinders in staggered arrangements
,”
J. Fluid Mech.
597
,
1
(
2008
).
You do not currently have access to this content.