The magnetic field dependent viscosity (magnetoviscosity) of dilute suspensions of spherical magnetic particles suspended in a Newtonian fluid subjected to both magnetic and shear flow fields was studied through Brownian dynamics simulations. Results are presented for the response of these suspensions to oscillating magnetic fields and magnetic fields that are corotating or counter-rotating with respect to the fluid vorticity. A decrease in negative values in the intrinsic magnetoviscosity is observed for oscillating and corotating magnetic fields, whereas an increase is observed for counter-rotating magnetic fields. The frequency corresponding to zero viscosity and the minimum value in the negative viscosity are lower for corotating magnetic fields than for oscillating magnetic fields. In the negative magnetoviscosity regions the particles in a corotating magnetic field rotate faster than in an oscillating magnetic field. It is estimated that the flow due to corotating particles could be strong enough to obtain a negative effective viscosity in dilute suspension. Moreover, it is shown that the commonly accepted constitutive equation for the antisymmetric stress describes well the intrinsic magnetoviscosity of the suspension.

1.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Cambridge University Press
,
New York
,
1985
).
2.
S.
Odenbach
,
Magnetoviscous Effects in Ferrofluids
(
Springer
,
Berlin
,
2002
).
3.
J. P.
McTague
, “
Magnetoviscosity of magnetic colloids
,”
J. Chem. Phys.
51
,
133
(
1969
).
4.
M. I.
Shliomis
, “
Effective viscosity of magnetic suspensions
,”
Sov. Phys. JETP
34
,
1291
(
1972
).
5.
A.
Einstein
, “
Eine neue Bestimmung der Molekuldimensionen
,”
Ann. Phys.
324
,
289
(
1906
).
6.
A.
Einstein
, “
Berichtigung zu meiner Arbeit: ‘Eine neue Bestimmung der Molekuldimensionen’
,”
Ann. Phys.
339
,
591
(
1911
).
7.
R. E.
Rosensweig
,
R.
Kaiser
, and
G.
Miskolczy
, “
Viscosity of magnetic fluid in a magnetic field
,”
J. Colloid Interface Sci.
29
,
680
(
1969
).
8.
W. F.
Hall
and
S. N.
Busenberg
, “
Viscosity of magnetic suspensions
,”
J. Chem. Phys.
51
,
137
(
1969
).
9.
M. I.
Shliomis
, “
Ferrohydrodynamics: Retrospective and issues
,” in
Ferrofluids
, edited by
S.
Odenbach
(
Springer-Verlag
,
Berlin
,
2002
), Vol.
594
, p.
85
.
10.
H.
Brenner
, “
Suspension rheology in the presence of rotary Brownian motion and external couples: Elongational flow of dilute suspensions
,”
Chem. Eng. Sci.
27
,
1069
(
1972
).
11.
H.
Morimoto
and
T.
Maekawa
, “
Brownian dynamics analysis of cluster structures and magnetic characteristics of ferromagnetic particles subjected to a shear flow field
,”
Int. J. Mod. Phys. B
15
,
823
(
2001
).
12.
S. R.
Strand
and
S.
Kim
, “
Dynamics and rheology of a dilute suspension of dipolar nonspherical particles in an external field: Part 1. Steady shear flows
,”
Rheol. Acta
31
,
94
(
1992
).
13.
A.
Satoh
, “
Rheological properties and orientational distributions of dilute ferromagnetic spherocylinder particle dispersions
,”
J. Colloid Interface Sci.
234
,
425
(
2001
).
14.
J. H.
Sánchez
and
C.
Rinaldi
, “
Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations
,”
J. Colloid Interface Sci.
331
,
500
(
2009
).
15.
A. O.
Tsebers
, “
Simulation of the magnetic rheology of a dilute suspension of ellipsoidal particles in a numerical experiment
,”
Magnetohydrodynamics (N.Y.)
20
,
349
(
1985
).
16.
C.
Rinaldi
,
T.
Franklin
,
M.
Zahn
, and
T.
Cader
, “
Magnetic nanoparticles in fluid suspension: Ferrofluid applications
,” in
Encyclopedia of Nanoscience and Nanotechnology
, edited by
J. A.
Schwarz
,
C.
Contescu
, and
K.
Putyera
(
Dekker
,
New York
,
2004
), p.
1
.
17.
A. P.
Krekhov
,
M. I.
Shliomis
, and
S.
Kamiyama
, “
Ferrofluid pipe flow in an oscillating magnetic field
,”
Phys. Fluids
17
,
033105
(
2005
).
18.
M. I.
Shliomis
and
K. I.
Morozov
, “
Negative viscosity of ferrofluid under alternating magnetic field
,”
Phys. Fluids
6
,
2855
(
1994
).
19.
J. C.
Bacri
,
R.
Perzynski
,
M. I.
Shliomis
, and
G. I.
Burde
, “
‘Negative-viscosity’ effect in a magnetic fluid
,”
Phys. Rev. Lett.
75
,
2128
(
1995
).
20.
A.
Zeuner
,
R.
Richter
, and
I.
Rehberg
, “
Experiments on negative and positive magnetoviscosity in an alternating magnetic field
,”
Phys. Rev. E
58
,
6287
(
1998
).
21.
F.
Gazeau
,
C.
Baravian
,
J. -C.
Bacri
,
R.
Perzynski
, and
M. I.
Shliomis
, “
Energy conversion in ferrofluids: Magnetic nanoparticles as motors or generators
,”
Phys. Rev. E
56
,
614
(
1997
).
22.
H.
Morimoto
,
T.
Maekawa
, and
Y.
Matsumoto
, “
Nonequilibrium Brownian dynamics analysis of negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow fields
,”
Phys. Rev. E
65
,
061508
(
2002
).
23.
R.
Moskowitz
and
R. E.
Rosensweig
, “
Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic field
,”
Appl. Phys. Lett.
11
,
301
(
1967
).
24.
V. M.
Zaitsev
and
M. I.
Shliomis
, “
Entrainment of ferromagnetic suspension by a rotating field
,”
J. Appl. Mech. Tech. Phys.
10
,
696
(
1969
).
25.
A.
Chaves
,
M.
Zahn
, and
C.
Rinaldi
, “
Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements
,”
Phys. Fluids
20
,
053102
(
2008
).
26.
C.
Rinaldi
,
F.
Gutman
,
X.
He
,
A. D.
Rosenthal
, and
M.
Zahn
, “
Torque measurements on ferrofluid cylinders in rotating magnetic fields
,”
J. Magn. Magn. Mater.
289
,
307
(
2005
).
27.
B. U.
Felderhof
, “
Magnetoviscosity of a ferrofluid in an oscillating field
,”
Magnetohydrodynamics
37
,
307
(
2001
).
28.
B. U.
Felderhof
and
H. J.
Kroh
, “
Hydrodynamics of magnetic and dielectric fluids in interaction with the electromagnetic field
,”
J. Chem. Phys.
110
,
7403
(
1999
).
29.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison-Wesley
,
San Francisco
,
2002
).
30.
E.
Dickinson
, “
Brownian dynamics with rotation-translation coupling
,”
J. Chem. Soc., Faraday Trans. 2
81
,
591
(
1985
).
31.
D. W.
Condiff
and
J. S.
Dahler
, “
Fluid mechanical aspects of antisymmetric stress
,”
Phys. Fluids
7
,
842
(
1964
).
32.
S.
Feng
,
A. L.
Graham
,
J. R.
Abbott
, and
H.
Brenner
, “
Antisymmetric stresses in suspensions: Vortex viscosity and energy dissipation
,”
J. Fluid Mech.
563
,
97
(
2006
).
33.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
New York
,
2007
).
34.
H.
Brenner
, “
Rheology of two-phase systems
,”
Annu. Rev. Fluid Mech.
2
,
137
(
1970
).
You do not currently have access to this content.