If is a general material surface in a flow in the space, we show the relationship between the three components of the vorticity field on and the curvatures of the streamlines of the tangential component of the velocity field (geodesic torsion, normal curvature, and geodesic curvature); and we show the relationship for the case of a general free surface. We present geometric formulae relating vorticity flux, from , and curvatures of (Gaussian curvature, mean curvature, curvatures of the streamlines of the tangential component of the velocity field); and we show the formulae for the case of a general free surface.
REFERENCES
1.
M. S.
Longuet-Higgins
, “Vorticity and curvature at a free surface
,” J. Fluid Mech.
356
, 149
(1998
).2.
B.
Herrera
, “Vorticity and curvature at a stream surface
,” Eur. J. Mech. B/Fluids
26
, 473
(2007
).3.
B.
Peck
and L.
Sigurdson
, “On the kinematics at a free surface
,” IMA J. Appl. Math.
61
, 1
(1998
).4.
M. J.
Lighthill
, in Laminar Boundary Layer
, edited by L.
Rosenhead
(Oxford University Press
, Oxford
, 1963
).5.
B.
Peck
and L.
Sigurdson
, “Geometry effects on free surface vorticity flux
,” ASME Trans. J. Fluids Eng.
121
, 678
(1999
).6.
J. Z.
Wu
, “A theory of three-dimensional interfacial vorticity dynamics
,” Phys. Fluids
7
, 2375
(1995
).7.
E. P.
Rood
, in Fluid Vortices
, edited by S. L.
Green
(Kluwer Academic
, Dordrecht
, 1995
).8.
M. P.
Do Carmo
, Differential Geometry of Curves and Surfaces
(Prentice-Hall
, Upper Saddle River
, 1976
).9.
R.
Aris
, Vectors, Tensors, and the Basic Equations of Fluid Mechanics
(Dover
, New York
, 1962
).10.
G. K.
Batchelor
, An Introduction to Fluid Dynamics
(Cambridge University Press
, Cambridge
, 1967
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.