To better understand the role of wing and fin flexibility in flapping locomotion, we study through experiment and numerical simulation a freely moving wing that can “pitch” passively as it is actively heaved in a fluid. We observe a range of flapping frequencies corresponding to large horizontal velocities, a regime of underperformance relative to a clamped (nonpitching) flapping wing, and a surprising, hysteretic regime in which the flapping wing can move horizontally in either direction (despite left/right symmetry being broken by the specific mode of pitching). The horizontal velocity is shown to peak when the flapping frequency is near the immersed system’s resonant frequency. Unlike for the clamped wing, we find that locomotion is achieved by vertically flapped symmetric wings with even the slightest pitching flexibility, and the system exhibits a continuous departure from the Stokesian regime. The phase difference between the vertical heaving motion and consequent pitching changes continuously with the flapping frequency, and the direction reversal is found to correspond to a critical phase relationship. Finally, we show a transition from coherent to chaotic motion by increasing the wing’s aspect ratio, and then a return to coherence for flapping bodies with circular cross section.

1.
M.
Sfakiotakis
,
D. M.
Lane
, and
J. B. C.
Davies
, “
Review of fish swimming modes for aquatic locomotion
,”
IEEE J. Ocean. Eng.
24
,
237
(
1999
).
2.
J.
Lighthill
,
Mathematical Biofluiddynamics
(
SIAM
,
Philadelphia
,
1975
).
3.
Swimming and Flying in Nature
, edited by
T. Y.-T.
Wu
,
C. J.
Brokaw
, and
C.
Brennen
(
Plenum
,
New York
,
1975
), Vol.
2
.
4.
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
D. K. P.
Yue
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid Mech.
32
,
33
(
2000
).
5.
M. S.
Triantafyllou
,
A. H.
Techet
, and
F. S.
Hover
, “
Review of experimental work in biomimetic foils
,”
IEEE J. Ocean. Eng.
29
,
585
(
2004
).
6.
Z. J.
Wang
, “
Dissecting insect flight
,”
Annu. Rev. Fluid Mech.
37
,
183
(
2005
).
7.
E. -J.
Marey
,
Annual report of the Board of Regents of the Smithsonian Institution
(
Smithsonian Institution
,
Washington
,
1871
).
8.
R.
Gopalkrishnan
,
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
D.
Barrett
, “
Active vorticity control in a shear-flow using a flapping foil
,”
J. Fluid Mech.
274
,
1
(
1994
).
9.
J. M.
Anderson
,
K.
Streitlien
,
D. S.
Barrett
, and
M. S.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
(
1998
).
10.
F. S.
Hover
,
O.
Haugsdal
, and
M. S.
Triantafyllou
, “
Effect of angle of attack profiles in flapping foil propulsion
,”
J. Fluids Structures
19
,
37
(
2004
).
11.
D. A.
Read
,
F. S.
Hover
, and
M. S.
Triantafyllou
, “
Forces on oscillating foils for propulsion and maneuvering
,”
J. Fluids Struct.
17
,
163
(
2003
).
12.
N.
Vandenberghe
,
J.
Zhang
, and
S.
Childress
, “
Symmetry breaking leads to forward flapping flight
,”
J. Fluid Mech.
506
,
147
(
2004
).
13.
S.
Alben
and
M.
Shelley
, “
Coherent locomotion as an attracting state for a free flapping body
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
11163
(
2005
).
14.
U. K.
Muller
,
B. L. E.
Van Den Heuvel
,
E. J.
Stamhuis
, and
J. J.
Videler
, “
Fish foot prints: Morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso)
,”
J. Exp. Biol.
200
,
2893
(
1997
).
15.
M. E.
DeMont
, “
Tuned oscillations in the swimming scallop Pecten maximus
,”
Can. J. Zool.
68
,
786
(
1990
).
16.
W. M.
Oxner
,
J.
Quinn
, and
M. E.
DeMont
, “
A mathematical model of body kinematics in swimming tadpoles
,”
Can. J. Zool.
71
,
407
(
1993
).
17.
J. H.
Long
, Jr.
and
K. S.
Nipper
, “
The importance of body stiffness in undulatory propulsion
,”
Am. Zool.
36
,
678
(
1996
).
18.
D. A.
Pabst
, “
Springs in swimming animals
,”
Am. Zool.
36
,
723
(
1996
).
19.
W. R.
Sears
, “
Some aspects of non-stationary airfoil theory and its practical application
,”
J. Aeronaut. Sci.
8
,
104
(
1941
).
20.
W.
E
and
J. G.
Liu
, “
Essentially compact schemes for unsteady viscous incompressible flows
,”
J. Comput. Phys.
126
,
122
(
1996
).
21.
U.
Pesavento
and
Z. J.
Wang
, “
Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation
,”
Phys. Rev. Lett.
93
,
144501
(
2004
).
22.
S. E.
Spagnolie
and
M. J.
Shelley
, “
Shape-changing bodies in fluid: Hovering, ratcheting, and bursting
,”
Phys. Fluids
21
,
013103
(
2009
).
23.
Z. J.
Wang
, “
Efficient implementation of the exact numerical far field boundary condition for Poisson equation on an infinite domain
,”
J. Comput. Phys.
153
,
666
(
1999
).
24.
S.
Alben
, “
An implicit method for coupled flow-body dynamics
,”
J. Comput. Phys.
227
,
4912
(
2008
).
25.
W. R.
Briley
, “
A numerical study of laminar separation bubbles using the Navier-Stokes equations
,”
J. Fluid Mech.
47
,
713
(
1971
).
26.
W.
E
and
J. G.
Liu
, “
Vorticity boundary condition and related issues for finite difference schemes
,”
J. Comput. Phys.
124
,
368
(
1996
).
27.
Y.
Saad
and
M. H.
Schultz
, “
GMRES—a generalized minimal residual algorithm for solving nonsymmetric linear-systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
7
,
856
(
1986
).
28.
L. A.
Miller
and
C. S.
Peskin
, “
When vortices stick: An aerodynamic transition in tiny insect flight
,”
J. Exp. Biol.
207
,
3073
(
2004
).
29.
M. M.
Koochesfahani
, “
Vortical patterns in the wake of an oscillating airfoil
,”
AIAA J.
27
,
1200
(
1989
).
30.
G. C.
Lewin
and
H.
Haj-Hariri
, “
Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow
,”
J. Fluid Mech.
492
,
339
(
2003
).
31.
H.
Dong
,
R.
Mittal
, and
F. M.
Najjar
, “
Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
,”
J. Fluid Mech.
566
,
309
(
2006
).
32.
G. K.
Batchelor
,
Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
33.
G. S.
Triantafyllou
,
M. S.
Triantafyllou
, and
M. A.
Grosenbaugh
, “
Optimal thrust development in oscillating foils with application to fish propulsion
,”
J. Fluids Structures
7
,
205
(
1993
).
34.
G. K.
Taylor
,
R. L.
Nudds
, and
A. L. R.
Thomas
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature (London)
425
,
707
(
2003
).
35.
E. M.
Purcell
, “
Life at low Reynolds-number
,”
Am. J. Phys.
45
,
3
(
1977
).
36.
E.
Lauga
, “
Continuous breakdown of Purcell’s scallop theorem with inertia
,”
Phys. Fluids
19
,
061703
(
2007
).
37.
S.
Heathcote
and
I.
Gursul
, “
Jet switching phenomenon for a periodically plunging airfoil
,”
Phys. Fluids
19
,
027104
(
2007
).
38.
X.
Zhang
,
S.
Ni
,
S.
Wang
, and
G.
He
, “
Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil
,”
Phys. Fluids
21
,
103302
(
2009
).
39.
T. L.
Daniel
, in
Efficiency and Economy in Animal Physiology
, edited by
R. W.
Blake
(
Cambridge University Press
,
Cambridge
,
1991
), pp.
83
95
.
40.
Z. J.
Wang
, “
Vortex shedding and frequency selection in flapping flight
,”
J. Fluid Mech.
410
,
323
(
2000
).
41.
R.
Bouard
and
M.
Coutanceau
, “
The early stage of development of the wake behind an impulsively started cylinder for 40<Re<104
,”
J. Fluid Mech.
101
,
583
(
1980
).
You do not currently have access to this content.