Mechanical heart valves implanted in mitral position have a great effect on the ventricular flow. Changes include alteration of the dynamics of the vortical structures generated during the diastole and the onset of turbulence, possibly affecting the efficiency of the heart pump or causing blood cell damage. Modifications to the hemodynamics in the left ventricle, when the inflow through the mitral orifice is altered, were investigated in vitro using a silicone rubber, flexible ventricle model. Velocity fields were measured in space and time by means of an image analysis technique: feature tracking. Three series of experiments were performed: one with a top hat inflow velocity profile (schematically resembling physiological conditions), and two with mechanical prosthetic valves of different design, mounted in mitral position—one monoleaflet and the other bileaflet. In each series of runs, two different cardiac outputs have been examined by changing the stroke volume. The flow was investigated in terms of phase averaged velocity field and second order moments of turbulent fluctuations. Results show that the modifications in the transmitral flow change deeply the interaction between the coherent structures generated during the first phase of the diastole and the incoming jet during the second diastolic phase. Top hat inflow gives the coherent structures which are optimal, among the compared cases, for the systolic function. The flow generated by the bileaflet valve preserves most of the beneficial features of the top hat inflow, whereas the monoleaflet valve generates a strong jet which discourages the permanence of large coherent structures at the end of the diastole. Moreover, the average shear rate magnitudes induced by the smoother flow pattern of the case of top hat inflow are nearly halved in comparison with the values measured with the mechanical valves. Finally, analysis of the turbulence statistics shows that the monoleaflet valves yield higher turbulence intensity in comparison with the bileaflet and, with top hat inflow, there is not a complete transition to turbulence.

1.
B. M.
Rodgers
and
D. C.
Sabitson
, Jr.
, “
Hemolytic anemia following prosthetic valve replacement
,”
Circulation
39
,
I155
(
1969
).
2.
M. J.
Garcia
,
P.
Vandervoort
,
W. J.
Stewart
,
B. W.
Lytle
,
D. M.
Cosgrove
,
J. D.
Thomas
, and
B. P.
Griffin
, “
Mechanisms of hemolysis with mitral prosthetic regurgitation study using transesophageal echocardiography and fluid dynamic simulation
,”
J. Am. Coll. Cardiol.
27
,
399
(
1996
).
3.
G.
Ismeno
,
A.
Renzulli
,
A.
Carozza
,
M.
De Feo
,
M.
Iannuzzi
,
P.
Sante
, and
M.
Cotrufo
, “
Intravascular hemolysis after mitral and aortic valve replacement with different types of mechanical prostheses
,”
Int. J. Cardiol.
69
,
179
(
1999
).
4.
Y.
Alemu
and
D.
Bluestein
, “
Flow-induced platelet activation and damage accumulation in a mechanical heart valve: Numerical studies
,”
Artif. Organs
31
,
677
(
2007
).
5.
Y.
Kawano
,
K.
Ohmori
,
Y.
Wada
,
I.
Kondo
,
K.
Mizushige
,
S.
Senda
,
S.
Nozaki
, and
M.
Kohno
, “
A novel color M-mode Doppler echocardiographic index for left ventricular relaxation: Depth of the maximal velocity point of the left ventricular inflow in early diastole
,”
Heart Vessels
15
,
205
(
2000
).
6.
R.
Verdonck
,
K.
Dumont
,
P.
Segers
,
S.
Vandenbogaerde
, and
G.
van Nooten
, “
Mock loop testing of On-X prosthetic mitral valve with Doppler echocardiography
,”
Artif. Organs
26
,
872
(
2002
).
7.
W. Y.
Kim
,
P. G.
Walker
,
E. M.
Pederson
,
J. K.
Poulsen
,
S.
Oyre
,
K.
Houlind
, and
A. P.
Yoganathan
, “
Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping
,”
J. Am. Coll. Cardiol.
26
,
224
(
1995
).
8.
H.
Machlera
,
M.
Perthelb
,
G.
Reiterc
,
U.
Reiterc
,
M.
Zinkd
,
P.
Bergmanna
,
A.
Waltensdorferd
, and
J.
Laa
, “
Influence of bileaflet prosthetic mitral valve orientation on left ventricular flow—an experimental in vivo magnetic resonance imaging study
,”
Eur. J. Cardiothorac Surg.
26
,
747
(
2004
).
9.
R.
Merrifield
,
Q.
Long
,
X. Y.
Xu
,
P. J.
Kilner
,
D. N.
Firmin
, and
G. Z.
Yang
, “
Combined CFD/MRI analysis of left ventricular flows
,” in
Medical Imaging and Augmented Reality
, edited by
G. -Z.
Yang
and
T.
Jiang
(
Springer-Verlag
,
Berlin
,
2004
), p.
229
.
10.
B. J.
Bellhouse
, “
Fluid mechanics of a model valve and left ventricle
,”
Cardiovasc. Res.
6
,
199
(
1972
).
11.
H.
Reul
,
N.
Talukder
, and
E. W.
Müller
, “
Fluid mechanics of the natural mitral valve
,”
J. Biomech.
14
,
361
(
1981
).
12.
J.
Kohler
,
G.
Ehrentraut
, and
B.
Stormer
, “
Haemodynamics of four new prosthetic heart values
,” in
Proceedings of European Society of Artificial Organs VIII
,
Copenhagen
(
1981
), p.
361
.
13.
L. N.
Scotten
,
D. K.
Walker
, and
R. T.
Brownlee
, “
The Bjork–Shiley and Ionescu–Shiley heart valve prostheses. In vitro comparison of their hydrodynamic performance in the mitral position
,”
Scand. J. Thorac. Cardiovasc. Surg.
17
,
201
(
1983
).
14.
J.
Fisher
,
G. R.
Jack
, and
D. J.
Whetley
, “
Design of a function test apparatus for prosthetic heart valves. Initial results in the mitral position
,”
Clin. Phys. Physiol. Meas.
7
,
63
(
1986
).
15.
V.
Garitey
,
T.
Gandelheid
,
J.
Fusezi
,
R.
Pelissier
, and
R.
Rieu
, “
Ventricular flow dynamic past bileaflet prosthetic heart valves
,”
Int. J. Artif. Organs
18
,
380
(
1995
).
16.
D.
Bluestein
,
E.
Rambod
, and
M.
Gharib
, “
Vortex shedding as a mechanism for free emboli formation in mechanical heart valves
,”
J. Biomech. Eng.
122
,
125
(
2000
).
17.
V.
Kini
,
C.
Bachmann
,
A.
Fontaine
,
S.
Deutsh
, and
J. M.
Tarbell
, “
Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves
,”
Artif. Organs
25
,
136
(
2001
).
18.
Ch.
Brücker
,
U.
Steinseifer
,
W.
Schrode
, and
H.
Reul
, “
Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry
,”
Meas. Sci. Technol.
13
,
1043
(
2002
).
19.
J.
Cooke
,
J.
Hertzberg
,
M.
Boardman
, and
R.
Shandas
, “
Characterizing vortex ring behaviour during ventricular filling with Doppler echocardiography: An in vitro study
,”
Ann. Biomed. Eng.
32
,
245
(
2004
).
20.
F.
Mouret
,
L.
Kadem
,
E.
Bertrand
,
J. D.
Dumesnil
,
P.
Pibarot
, and
R.
Rieu
, “
Mitral prosthesis opening and flow dynamics in a model of left ventricle: An in vitro study on a monoleaflet mechanical valve
,”
Cardiovasc. Eng.
5
,
13
(
2005
).
21.
O.
Pierrakos
,
P. P.
Vlachos
, and
D. P.
Telionis
, “
Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses
,”
J. Biomech. Eng.
126
,
714
(
2004
).
22.
A.
Cenedese
,
Z.
Del Prete
,
M.
Miozzi
, and
G.
Querzoli
, “
A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves
,”
Exp. Fluids
39
,
322
(
2005
).
23.
T.
Akutsu
and
T.
Fukuda
, “
Time-resolved particle image velocimetry and laser Doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses
,”
J. Artif. Organs
8
,
171
(
2005
).
24.
T.
Akutsu
and
J.
Saito
, “
Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses
,”
J. Artif. Organs
9
,
165
(
2006
).
25.
O.
Pierrakos
and
P. P.
Vlachos
, “
The effect of vortex formation on left ventricular filling and mitral valve efficiency
,”
J. Biomech. Eng.
128
,
527
(
2006
).
26.
B. O.
Haugen
,
S.
Berg
,
K. M.
Brecke
,
S. O.
Samstad
,
S. A.
Slørdahl
,
T.
Skjærpe
, and
H.
Torp
, “
Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate
,”
Eur. J. Echocardiogr.
1
,
252
(
2000
).
27.
M.
Grigioni
,
C.
Daniele
,
V.
D’Avenio
, and
V.
Barbaro
, “
Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices
,”
J. Biomech.
35
,
1613
(
2002
).
28.
B.
Baccani
,
F.
Domenichini
,
G.
Pedrizzetti
, and
G.
Tonti
, “
Fluid dynamics of the left ventricular filling in dilated cardiomiopathy
,”
J. Biomech.
35
,
665
(
2002
).
29.
F.
Domenichini
,
G.
Querzoli
,
A.
Cenedese
, and
G.
Pedrizzetti
, “
Combined experimental and numerical analysis of the flow structure into the left ventricle
,”
J. Biomech.
40
,
1988
(
2007
).
30.
J.
Shi
and
C.
Tomasi
, “
Good features to track
,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR94)
, Seattle,
1994
.
31.
C. A.
Walsh
and
P.
Wilde
,
Practical Echocardiography
(
Cambridge University Press
,
New York
,
2005
), p.
218
.
32.
H. G.
Hinghofer-Szalkay
and
J. E.
Greenleaf
, “
Continuous monitoring of blood volume changes in humans
,”
J. Appl. Physiol.
63
,
1003
(
1987
).
33.
G.
Pedrizzetti
and
F.
Domenichini
, “
Asymmetric opening of a simple bi-leaflet valve
,”
Phys. Rev. Lett.
98
,
214503
(
2007
).
34.
H.
Bot
,
J.
Verburg
,
B. J.
Delemarre
, and
J.
Strackee
, “
Determinants of the occurrence of vortex rings in the left ventricle during diastole
,”
J. Biomech.
23
,
607
(
1990
).
35.
F.
Domenichini
,
G.
Pedrizzetti
, and
B.
Baccani
, “
Three-dimensional filling flow into a model left ventricle
,”
J. Fluid Mech.
539
,
179
(
2005
).
36.
C.
Nevaril
,
J.
Hellums
,
C. J.
Alfrey
, and
E.
Lynch
, “
Physical effects in red blood cell trauma
,”
AIChE J.
15
,
707
(
1969
).
37.
P. L.
Blackshear
, “
Mechanical hemolysis in flowing blood
,” in
Biomechanics: Its Foundations and Objectives
, edited by
Y. C.
Fung
,
N.
Perrone
, and
M.
Anliker
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1972
), p.
501
.
38.
A. A.
Fontaine
,
J. T.
Ellis
,
T. M.
Healy
,
J.
Hopmeyer
, and
A. P.
Yoganathan
, “
Identification of peak stresses in cardiac prostheses. A comparison of two-dimensional versus three-dimensional principal stresses analyses
,”
ASAIO J.
42
,
154
(
1996
).
39.
M.
Grigioni
,
C.
Daniele
,
V.
D’Avenio
, and
V.
Barbaro
, “
A discussion on the threshold limit for hemolysis related to Reynolds shear stress
,”
J. Biomech.
32
,
1107
(
1999
).
40.
Y.
Woo
and
A. P.
Yoganathan
, “
In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart valve prostheses
,”
J. Biomech.
19
,
39
(
1986
).
You do not currently have access to this content.