We present the results of a combined experimental and theoretical investigation of the vertical impact of low-density spheres on a water surface. Particular attention is given to characterizing the sphere dynamics and the influence of its deceleration on the shape of the resulting air cavity. A theoretical model is developed which yields simple expressions for the pinch-off time and depth, as well as the volume of air entrained by the sphere. Theoretical predictions compare favorably with our experimental observations, and allow us to rationalize the form of water-entry cavities resulting from the impact of buoyant and nearly buoyant spheres.

1.
A.
May
, “
Water entry and the cavity-running behavior of missiles
,” Final technical report, Report No. A924020, NAVSEA Hydryballistics Advisory Committee, Silver Spring, MD,
1975
, http://www.stormingmedia.us/92/9240/A924020.html.
2.
S.
Ashley
, “
Warp drive underwater
,”
Sci. Am.
284
,
70
(
2001
).
3.
O. M.
Faltinsen
,
Sea Loads on Ships and Offshore Structures
(
Cambridge University Press
,
Cambridge
,
1990
), pp.
1
340
.
4.
L.
Rosellini
,
F.
Hersen
,
C.
Clanet
, and
L.
Bocquet
, “
Skipping stones
,”
J. Fluid Mech.
543
,
137
(
2005
).
5.
J. W. M.
Bush
and
D. L.
Hu
, “
Walking on water: Biolocomotion at the interface
,”
Annu. Rev. Fluid Mech.
38
,
339
(
2006
).
6.
C. M.
Seddon
and
M.
Moatamedi
, “
Review of water entry with applications to aerospace structures
,”
Int. J. Impact Eng.
32
,
1045
(
2006
).
7.
J. M.
Aristoff
and
J. W. M.
Bush
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
(
2009
).
8.
R.
Bergmann
,
D.
van der Meer
,
S.
Gekle
,
A.
van der Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
(
2009
).
9.
V.
Duclaux
,
F.
Caillé
,
C.
Duez
,
C.
Ybert
,
L.
Bocquet
, and
C.
Clanet
, “
Dynamics of transient cavities
,”
J. Fluid Mech.
591
,
1
(
2007
).
10.
T. T.
Truscott
and
A. H.
Techet
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
(
2009
).
11.
A.
May
and
J. C.
Woodhull
, “
Drag coefficients of steel spheres entering water vertically
,”
J. Appl. Phys.
19
,
1109
(
1948
).
12.
M.
Lee
,
R. G.
Longoria
, and
D. E.
Wilson
, “
Cavity dynamics in high-speed water entry
,”
Phys. Fluids
9
,
540
(
1997
).
13.
D.
Gilbarg
and
R. A.
Anderson
, “
Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water
,”
J. Appl. Phys.
19
,
127
(
1948
).
14.
S.
Gaudet
, “
Numerical simulation of circular disks entering the free surface of a fluid
,”
Phys. Fluids
10
,
2489
(
1998
).
15.
J. W.
Glasheen
and
T. A.
McMahon
, “
Vertical water entry of disks at low Froude numbers
,”
Phys. Fluids
8
,
2078
(
1996
).
16.
P. C.
Hiemenz
and
R.
Rajagopalan
,
Principles of Colloid and Surface Chemistry
(
Dekker
,
New York
,
1997
), pp.
1
650
.
17.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
(
2007
).
18.
S.
Gekle
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
High-speed jet formation after solid object impact
,”
Phys. Rev. Lett.
102
,
034502
(
2009
).
19.
T.
Grumstrup
,
J. B.
Keller
, and
A.
Belmonte
, “
Cavity ripples observed during the impact of solid objects into liquids
,”
Phys. Rev. Lett.
99
,
114502
(
2007
).
20.
T.
Miloh
, “
On the initial-stage slamming of a rigid sphere in a vertical water entry
,”
Appl. Ocean Res.
13
,
43
(
1991
).
21.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
2000
), pp.
1
635
.
You do not currently have access to this content.