Motile eukaryotic cells propel themselves in viscous fluids by passing waves of bending deformation down their flagella. An infinitely long flagellum achieves a hydrodynamically optimal low-Reynolds number locomotion when the angle between its local tangent and the swimming direction remains constant along its length. Optimal flagella therefore adopt the shape of a helix in three dimensions (smooth) and that of a sawtooth in two dimensions (nonsmooth). Physically, biological organisms (or engineered microswimmers) must expend internal energy in order to produce the waves of deformation responsible for the motion. Here we propose a physically motivated derivation of the optimal flagellum shape. We determine analytically and numerically the shape of the flagellar wave which leads to the fastest swimming for a given appropriately defined energetic expenditure. Our novel approach is to define an energy which includes not only the work against the surrounding fluid, but also (1) the energy stored elastically in the bending of the flagellum, (2) the energy stored elastically in the internal sliding of the polymeric filaments which are responsible for the generation of the bending waves (microtubules), and (3) the viscous dissipation due to the presence of an internal fluid. This approach regularizes the optimal sawtooth shape for two-dimensional deformation at the expense of a small loss in hydrodynamic efficiency. The optimal waveforms of finite-size flagella are shown to depend on a competition between rotational motions and bending costs, and we observe a surprising bias toward half-integer wave numbers. Their final hydrodynamic efficiencies are above 6%, significantly larger than those of swimming cells, therefore indicating available room for further biological tuning.

1.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
2.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
(
1977
).
3.
J.
Lighthill
,
Mathematical Biofluiddynamics
(
SIAM
,
Philadelphia
,
1975
).
4.
S.
Childress
,
Mechanics of Swimming and Flying
(
Cambridge University Press
,
Cambridge, U.K.
,
1981
).
5.
R. M.
Macnab
, “
Examination of bacterial flagellation by dark-field microscopy
,”
J. Clin. Microbiol.
4
,
258
(
1976
).
6.
S. M.
Block
,
K. A.
Fahrner
, and
H. C.
Berg
, “
Visualization of bacterial flagella by video-enhanced light microscopy
,”
J. Bacteriol.
173
,
933
(
1991
).
7.
L.
Turner
,
W. S.
Ryu
, and
H. C.
Berg
, “
Real-time imaging of fluorescent flagellar filaments
,”
J. Bacteriol.
182
,
2793
(
2000
).
8.
G. I.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. London, Ser. A
209
,
447
(
1951
).
9.
G. J.
Hancock
, “
The self-propulsion of microscopic organisms through liquids
,”
Proc. R. Soc. London, Ser. A
217
,
96
(
1953
).
10.
J.
Gray
, “
The movement of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
775
(
1955
).
11.
J.
Lighthill
, “
Flagellar hydrodynamics: The John von Neumann lecture, 1975
,”
SIAM Rev.
18
,
161
(
1976
).
12.
G. K.
Batchelor
, “
Slender body theory for particles of arbitrary cross section in Stokes flow
,”
J. Fluid Mech.
44
,
419
(
1970
).
13.
R. G.
Cox
, “
The motion of long slender bodies in a viscous fluid. Part 1. General theory
,”
J. Fluid Mech.
44
,
791
(
1970
).
14.
J. B.
Keller
and
S. I.
Rubinow
, “
Swimming of flagellated microorganisms
,”
Biophys. J.
16
,
151
(
1976
).
15.
R. E.
Johnson
, “
An improved slender body theory for Stokes flow
,”
J. Fluid Mech.
99
,
411
(
1980
).
16.
K. E.
Machin
, “
Wave propagation along flagella
,”
J. Exp. Biol.
35
,
796
(
1958
).
17.
J. J. L.
Higdon
, “
A hydrodynamic analysis of flagellar propulsion
,”
J. Fluid Mech.
90
,
685
(
1979
).
18.
C. J.
Brokaw
, “
Non-sinusoidal bending waves of sperm flagella
,”
J. Exp. Biol.
43
,
455
(
1965
).
19.
C. J.
Brokaw
, “
Bending moments in free-swimming flagella
,”
J. Exp. Biol.
53
,
445
(
1970
).
20.
C. J.
Brokaw
, “
Computer simulation of flagellar movement I. Demonstration of stable bend initiation by the sliding filament model
,”
Biophys. J.
12
,
564
(
1972
).
21.
C.
Brennen
and
H.
Winet
, “
Fluid mechanics of propulsion by cilia and flagella
,”
Annu. Rev. Fluid Mech.
9
,
339
(
1977
).
22.
S.
Camalet
and
F.
Julicher
, “
Generic aspects of axonemal beating
,”
New J. Phys.
2
,
24
(
2000
).
23.
I. H.
Riedel-Kruse
,
A.
Hilfinger
,
J.
Howard
, and
F.
Julicher
, “
How molecular motors shape the flagellar beat
,”
HFSP J.
1
,
192
(
2007
).
24.
T. K.
Chaudhury
, “
Swimming in a viscoelastic liquid
,”
J. Fluid Mech.
95
,
189
(
1979
).
25.
L. D.
Sturges
, “
Motion induced by a waving plate
,”
J. Non-Newtonian Fluid Mech.
8
,
357
(
1981
).
26.
G. R.
Fulford
,
D. F.
Katz
, and
R. L.
Powell
, “
Swimming of spermatozoa in a linear viscoelastic fluid
,”
Biorheology
35
,
295
(
1998
).
27.
E.
Lauga
, “
Propulsion in a viscoelastic fluid
,”
Phys. Fluids
19
,
083104
(
2007
).
28.
H. C.
Fu
,
T. R.
Powers
, and
H. C.
Wolgemuth
, “
Theory of swimming filaments in viscoelastic media
,”
Phys. Rev. Lett.
99
,
258101
(
2007
).
29.
D. J.
Smith
,
E. A.
Gaffney
,
H.
Gadelha
,
N.
Kapur
, and
J. C.
Kirkman-Brown
, “
Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity
,”
Cell Motil. Cytoskeleton
66
,
220
(
2009
).
30.
O.
Pironneau
and
D. F.
Katz
, “
Optimal swimming of flagellated microorganisms
,”
J. Fluid Mech.
66
,
391
(
1974
).
31.
N. R.
Silvester
and
M. E. J.
Holwill
, “
An analysis of hypothetical flagellar waveforms
,”
J. Theor. Biol.
35
,
505
(
1972
).
32.
R. D.
Dresdner
,
D. F.
Katz
, and
S. A.
Berger
, “
The propulsion by large amplitude waves of uniflagellar micro-organisms of finite length
,”
J. Fluid Mech.
97
,
591
(
1980
).
33.
D. S.-W.
Tam
, “
Motion at low Reynolds number
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA,
2008
.
34.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
(
1955
).
35.
R. E.
Johnson
and
C. J.
Brokaw
, “
Flagellar hydrodynamics: Comparison between resistive-force theory and slender-body theory
,”
Biophys. J.
25
,
113
(
1979
).
36.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge, U.K.
,
1992
).
37.
C. J.
Brokaw
, “
Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella
,”
Science
243
,
1593
(
1989
).
38.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 3rd ed. (
Pergamon
,
Oxford
,
1986
).
39.
A.
Ghatak
and
A. L.
Das
, “
Kink instability of a highly deformable elastic cylinder
,”
Phys. Rev. Lett.
99
,
076101
(
2007
).
40.
C. K.
Omoto
and
C. J.
Brokaw
, “
Structure and behavior of the sperm terminal filament
,”
J. Cell Sci.
58
,
385
(
1982
).
41.
F.
Gittes
,
B.
Mickey
,
J.
Nettleton
, and
J.
Howard
, “
Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
,”
J. Cell Biol.
120
,
923
(
1993
).
42.
C. J.
Brokaw
, “
Control of flagellar bending: A new agenda based on dynein diversity
,”
Cell Motil. Cytoskeleton
28
,
199
(
1994
).
43.
A.
Hilfinger
, “
Dynamics of cilia and flagella
,” Ph.D. thesis,
Dresden University of Technology
, Dresden, Germany,
2005
.
44.
C. J.
Brokaw
, “
Bend propagation by a sliding filament model for flagella
,”
J. Exp. Biol.
55
,
289
(
1971
).
45.
S. E.
Spagnolie
, “
Rehinging biflagellar locomotion in a viscous fluid
,”
Phys. Rev. E
80
,
046323
(
2009
).
46.
M.
Hines
and
J.
Blum
, “
On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model
,”
Biophys. J.
47
,
705
(
1985
).
You do not currently have access to this content.