The wave-induced flow over a fixed bottom boundary beneath an internal solitary wave of elevation propagating in an unsheared, two-layer, stably stratified fluid is investigated experimentally. Measurements of the velocity field close to the bottom boundary are presented to illustrate that in the lower layer the fluid velocity near the bottom reverses direction as the wave decelerates while higher in the water column the fluid velocity is in the same direction as the wave propagation. The observation is similar in nature to that for wave-induced flow beneath a surface solitary wave. Contrary to theoretical predictions for internal solitary waves, no evidence for either boundary layer separation or vortex formation is found beneath the front half of the wave in the adverse pressure gradient region of the flow.

1.
L. A.
Ostrovsky
and
Y. A.
Stepanyants
, “
Internal solitons in laboratory experiments
,”
Chaos
.
15
,
037111
(
2005
).
2.
K. R.
Helfrich
and
W. K.
Melville
, “
Long nonlinear internal waves
,”
Annu. Rev. Fluid Mech.
38
,
395
(
2006
).
3.
D. J.
Bogucki
,
T.
Dickey
, and
L. G.
Redekopp
, “
Sediment resuspension and mixing by resonantly generated internal solitary waves
,”
J. Phys. Oceanogr.
27
,
1181
(
1997
).
4.
J. M.
Klymak
and
J. N.
Moum
, “
Internal solitary waves of elevation advancing on a shoaling shelf
,”
Geophys. Res. Lett.
30
,
2045
, doi:10.1029/2003GL017706 (
2003
).
5.
J. N.
Moum
and
W. D.
Smyth
, “
The pressure disturbance of a nonlinear internal wave train
,”
J. Fluid Mech.
558
,
153
(
2006
).
6.
J. N.
Moum
,
J. M.
Klymak
,
J. D.
Nash
,
A.
Perlin
, and
W. D.
Smyth
, “
Energy transport by nonlinear internal waves
,”
J. Phys. Oceanogr.
37
,
1968
(
2007
).
7.
A.
Scotti
and
J.
Pineda
, “
Observation of very large and steep internal waves of elevation near the Massachusetts coast
,”
Geophys. Res. Lett.
31
,
L22307
, doi:10.1029/2004GL021052 (
2004
).
8.
T. D.
Dickey
,
G. C.
Chang
,
Y. C.
Arawaal
, and
A. G.
Williams
, “
Sediment resuspension in the wakes of Hurricanes Edouard and Hortese
,”
Geophys. Res. Lett.
25
,
3533
, doi:10.1029/98GL02635 (
1998
).
9.
P.
Hosegood
and
H.
van Haren
, “
Near-bed solibores over the continental slope in the Faeroe-Shetland Channel
,”
Deep-Sea Res.
51
,
2943
(
2004
).
10.
G. S.
Carter
,
M. C.
Gregg
, and
R. -C.
Lien
, “
Internal waves, solitarylike waves, and mixing on the Monterey Bay Shelf
,”
Cont. Shelf Res.
25
,
1499
(
2005
).
11.
L.
Boegman
and
G. N.
Ivey
, “
Flow separation and resuspension beneath shoaling nonlinear internal waves
,”
J. Geophys. Res.
114
,
C02018
, doi:10.1029/2007JC004411 (
2009
).
12.
D. J.
Bogucki
,
L. G.
Redekopp
, and
J.
Barth
, “
Internal solitary waves in the Coastal Mixing and Optics 1996 experiment: Multimodal structure and resuspension
,”
J. Geophys. Res.
110
,
C02024
, doi:10.1029/2003JC002253 (
2005
).
13.
D. J.
Bogucki
and
L. G.
Redekopp
, “
A mechanism for sediment resuspension by internal solitary waves
,”
Geophys. Res. Lett.
26
,
1317
, doi:10.1029/1999GL900234 (
1999
).
14.
B.
Wang
and
L. G.
Redekopp
, “
Long internal waves in shear flows: Topographic resonance and wave-induced global instability
,”
Dyn. Atmos. Oceans
33
,
263
(
2001
).
15.
M.
Stastna
and
K. G.
Lamb
, “
Vortex shedding and sediment resuspension associated with the interaction of an internal solitary wave and the bottom boundary layer
,”
Geophys. Res. Lett.
29
,
1512
, doi:10.1029/2001GL014070 (
2002
).
16.
P. J.
Diamessis
and
L. G.
Redekopp
, “
Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers
,”
J. Phys. Oceanogr.
36
,
784
(
2006
).
17.
L. L.
Pauley
,
P.
Moin
, and
W. C.
Reynolds
, “
The structure of two-dimensional separation
,”
J. Fluid Mech.
220
,
397
(
1990
).
18.
M. D.
Ripley
and
L. L.
Pauley
, “
The unsteady structure of two-dimensional steady laminar separation
,”
Phys. Fluids
5
,
3099
(
1993
).
19.
M.
Alam
and
N. D.
Sandham
, “
Direct numerical simulation of ’short’ laminar separation bubbles with turbulent reattachment
,”
J. Fluid Mech.
410
,
1
(
2000
).
20.
M.
Stastna
and
K. G.
Lamb
, “
Sediment resuspension mechanisms associated with internal waves in coastal waters
,”
J. Geophys. Res.
113
,
C10016
, doi:10.1029/2007JC004711 (
2008
).
21.
G. A.
Khabakhpashev
, “
Effect of bottom friction on the dynamics of gravity perturbations
,”
Fluid Dyn.
22
,
430
(
1987
).
22.
P. L.-F.
Liu
,
Y. S.
Park
, and
E. A.
Cowen
, “
Boundary layer flow and bed shear stress under a solitary wave
,”
J. Fluid Mech.
574
,
449
(
2007
).
23.
P.
Lin
and
W.
Zhang
, “
Numerical simulation of wave-induced laminar boundary layers
,”
Coastal Eng.
55
,
400
(
2008
).
24.
G.
Vittori
and
P.
Blondeaux
, “
Turbulent boundary layer under a solitary wave
,”
J. Fluid Mech.
615
,
433
(
2008
).
25.
M.
Carr
and
P. A.
Davies
, “
The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid
,”
Phys. Fluids
18
,
016601
(
2006
).
26.
M.
Carr
,
P. A.
Davies
, and
P.
Shivaram
, “
Experimental evidence of internal solitary wave-induced global instability in shallow water benthic boundary layers
,”
Phys. Fluids
20
,
066603
(
2008
).
27.
P. A.
Davies
, “
Aspects of flow visualisation and density field monitoring of stratified flows
,”
Opt. Lasers Eng.
16
,
311
(
1992
).
28.
T. W.
Kao
,
F. S.
Pan
, and
D.
Renouard
, “
Internal solitons on the pycnocline: Generation, propagation, and shoaling and breaking over a slope
,”
J. Fluid Mech.
159
,
19
(
1985
).
You do not currently have access to this content.