The electrohydrodynamic instability of a horizontal rotating fluid layer with a vertical electrical conductivity gradient is considered. An external electric field is applied across the fluid layer to induce an unstably stratified electrical body force. A linear stability analysis has been performed to study the effect of rotation on the onset of electrohydrodynamic instability in the fluid layer. Results show that the instability behaviors depend heavily on the boundary condition of bottom surface. In the case of stress-free condition, rotation enhances the stability and the onset of instability will be dominated by the oscillatory mode once the speed of rotation (or Taylor number) exceeds a critical value. In contrast, in the case of rigid bottom surface, rotation also tends to stabilize the fluid layer and the stationary mode will prevail eventually with increasing Taylor number. However rotation becomes destabilizing as the critical mode shifts from oscillatory to stationary. Moreover, under the same electrical conductivity gradient, the case with stress-free bottom surface is always more unstable than that with rigid bottom surface in the small Taylor number domain. However this situation is reversed at high Taylor number region since the stability of the stress-free case will be enhanced more rapidly than the rigid case.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
M. H.
Oddy
,
J. G.
Santiago
, and
J. C.
Mikkelsen
, “
Electrokinetic instability micromixing
,”
Anal. Chem.
73
,
5822
(
2001
).
3.
F. Q.
Dang
,
L. H.
Zhang
,
M.
Jabasini
,
N.
Kaji
, and
Y.
Baba
, “
Characterization of electrophoretic behavior of sugar isomer by microchip electrophoresis coupled with videomicroscopy
,”
Anal. Chem.
75
,
2433
(
2003
).
4.
J. J.
Santos
and
B. D.
Storey
, “
Instability of electro-osmotic channel flow with streamwise conductivity gradients
,”
Phys. Rev. E
78
,
046316
(
2008
).
5.
J. C.
Baygents
and
F.
Baldessari
, “
Electrohydrodynamic instability in a thin fluid layer with an electrical conductivity gradient
,”
Phys. Fluids
10
,
301
(
1998
).
6.
H.
Lin
, “
Electrokinetic instability in microchannel flows: A review
,”
Mech. Res. Commun.
36
,
33
(
2009
).
7.
G. I.
Taylor
and
A. D.
McEwan
, “
The stability of a horizontal fluid interface in a vertical electric field
,”
J. Fluid Mech.
22
,
1
(
1965
).
8.
P. H.
Roberts
, “
Electrohydrodynamic convection
,”
Q. J. Mech. Appl. Math.
22
,
211
(
1969
).
9.
R. J.
Turnbull
, “
Effect of dielectrophoretic forces on the Benard instability
,”
Phys. Fluids
12
,
1809
(
1969
).
10.
C. H.
Chen
,
H.
Lin
,
S. K.
Lele
, and
J. G.
Santiago
, “
Convective and absolute electrokinetic instability with conductivity gradients
,”
J. Fluid Mech.
524
,
263
(
2005
).
11.
M. H.
Chang
,
A. C.
Ruo
, and
F.
Chen
, “
Electrohydrodynamic instability in a horizontal fluid layer with electrical conductivity gradient subject to a weak shear flow
,”
J. Fluid Mech.
634
,
191
(
2009
).
12.
J. F.
Hoburg
and
J. R.
Melcher
, “
Electrohydrodynamic mixing and instability induced by co-linear fields and conductivity gradients
,”
Phys. Fluids
20
,
903
(
1977
).
13.
J. F.
Hoburg
, “
Internal electrohydrodynamic instability of liquids with collinear fields and conductivity gradients
,”
J. Fluid Mech.
84
,
291
(
1978
).
14.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon
,
Oxford
,
1961
).
15.
B. M.
Boubnov
and
G. S.
Golitsyn
,
Convection in Rotating Fluids
(
Springer
,
New York
,
1995
).
16.
M.
Takashima
, “
The effect of rotation on electrohydrodynamic instability
,”
Can. J. Phys.
54
,
342
(
1976
).
17.
M. I. A.
Othman
, “
Electrohydrodynamic instability of a rotating layer of a viscoelastic fluid heated from below
,”
Z. Angew. Math. Phys.
55
,
468
(
2004
).
18.
R. A.
Mosher
,
D. A.
Saville
and
W.
Thormann
,
The Dynamics of Electrophoresis
(
VCH
,
New York
,
1992
), pp.
163
230
.
19.
W.
Thormann
,
R. A.
Mosher
, and
M.
Bier
, “
Experimental and theoretical dynamics of isoelectric focusing
,”
J. Chromatogr. A
351
,
17
(
1986
).
20.
K.
Macounová
,
C. R.
Cabrera
,
M. R.
Holl
, and
P.
Yager
, “
Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing
,”
Anal. Chem.
72
,
3745
(
2000
).
21.
G. J.
Sommer
and
A. V.
Hatch
, “
IEF in microfluidic devices
,”
Electrophoresis
30
,
742
(
2009
).
22.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Springer
,
New York
,
1989
).
23.
G.
Veronis
, “
Cellular convection with finite amplitude in a rotating fluid
,”
J. Fluid Mech.
5
,
401
(
1959
).
24.
S.
Chandrasekhar
, “
The instability of a layer of fluid heated below and subject to Coriolis forces
,”
Proc. R. Soc. London, Ser. A
217
,
306
(
1953
).
You do not currently have access to this content.