The interaction of electrical fields and liquids can lead to a phenomenon that defies intuition. Some famous examples can be found in electrohydrodynamics as Taylor cones, whipping jets, or noncoalescing drops. A less famous example is the floating water bridge: a slender thread of water held between two glass beakers in which a high voltage difference is applied. Surprisingly, the water bridge defies gravity even when the beakers are separated at distances up to 2 cm. In this paper, experimental measurements and simple models are proposed and discussed for the stability of the bridge and the source of the flow, revealing an important role of polarization forces on the stability of the water bridge. On the other hand, the observed flow can only be explained due to the non-negligible free charge present in the surface. In this sense, the floating water bridge can be considered as an extreme case of a leaky dielectric liquid [J. R. Melcher and G. I. Taylor, Annu. Rev. Fluid Mech.1, 111 (1969)].

1.
G. I.
Taylor
, “
Dissintegration of water drops in an electric field
,”
Proc. R. Soc. London, Ser. A
280
,
383
(
1964
).
2.
J. F.
de la Mora
, “
The fluid dynamics of Taylor cones
,”
Annu. Rev. Fluid Mech.
39
,
217
(
2007
).
3.
R. T.
Collins
,
J. J.
Jones
,
M. T.
Harris
, and
O. A.
Basaran
, “
Electrohydrodynamic tip streaming and emission of charged drops from liquid cones
,”
Nat. Phys.
4
,
149
(
2008
).
4.
G. I.
Taylor
, “
Electrically driven jets
,”
Proc. R. Soc. London, Ser. A
313
,
453
(
1969
).
5.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
, “
Electrospinning and electrically forced jets. I. Stability theory
,”
Phys. Fluids
13
,
2201
(
2001
).
6.
G.
Riboux
,
A. G.
Marín
,
I. G.
Loscertales
, and
A.
Barrero
, “
Whipping instability characterization of an electrified visco-capillary jet
,”
J. Fluid Mech.
(
2010
) (in press).
7.
J. C.
Bird
,
W. D.
Ristenpart
,
A.
Belmonte
, and
H. A.
Stone
, “
Critical angle for electrically driven coalescence of two conical droplets
,”
Phys. Rev. Lett.
103
,
164502
(
2009
).
8.
E. C.
Fuchs
,
J.
Woisetchläger
,
K.
Gatterer
,
E.
Maier
,
R.
Pecnik
,
G.
Holler
, and
H.
Eisenkolbl
, “
The floating water bridge
,”
J. Phys. D
40
,
6112
(
2007
).
9.
E. C.
Fuchs
,
K.
Gatterer
,
G.
Holler
, and
J.
Woisetchläger
, “
Dynamics of the water floating bridge
,”
J. Phys. D
41
,
185502
(
2008
).
10.
E. C.
Fuchs
,
B.
Bitschnau
,
J.
Woisetchläger
,
E.
Maier
,
B.
Beuneu
, and
J.
Teixeira
, “
Neutron scattering of a floating heavy water bridge
,”
J. Phys. D
42
,
065502
(
2009
).
11.
J.
Woisetschläger
,
K.
Gatterer
, and
E. C.
Fuchs
, “
Experiments in a water floating bridge
,”
Exp. Fluids
48
,
121
(
2010
).
12.
W. G.
Armstrong
, “
Electrical phenomena
,”
The Newcastle Literary and Philosophical Society, The Electrical Engineer
154–155
,
10
(
1893
).
13.
W. S.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1-10
,
4
(
1878
).
14.
J.
Plateau
, “
Experimental and theoretical researches on the gures of equilibrium of a liquid mass withdrawn from the action of gravity
,” Annual Report of the Board of Regents of the Smithsonian Institution, Washington, DC,
1863
, pp.
207
285
.
15.
H.
González
,
F. M. J.
Mccluskey
,
A.
Castellanos
, and
A.
Barrero
, “
Stabilization of dielectric liquid bridges by electric fields in the absence of gravity
,”
J. Fluid Mech.
206
,
545
(
1989
).
16.
A.
Ramos
,
H.
Gonzalez
, and
A.
Castellanos
, “
Experiments on dielectric liquid bridges subjected to axial electric fields
,”
Phys. Fluids
6
,
3206
(
1994
).
17.
C. L.
Burcham
and
D. A.
Saville
, “
Electrohydrodynamic stability: Taylor–Melcher theory for a liquid bridge suspended in a dielectric gas
,”
J. Fluid Mech.
452
,
163
(
2002
).
18.
J. R.
Melcher
and
G. I.
Taylor
, “
Electrohydrodynamics: A review of the role of interfacial shear stresses
,”
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
19.
H.
Pellat
, “
Mesure de la force agissant sur les diélectriques liquides non électrisés placés dans un champ élitrique
,”
C. R. Hebd. Seances Acad. Sci.
119
,
691
(
1895
).
20.
T. B.
Jones
, “
An electromechanical interpretation of electrowetting
,”
J. Micromech. Microeng.
15
,
1184
(
2005
).
21.
K. L.
Wang
and
T. B.
Jones
, “
Saturation effects in dynamic electrowetting
,”
Appl. Phys. Lett.
86
,
054104
(
2005
).
22.
N. K.
Nayyar
and
G. S.
Murty
, “
The stability of a dielectric liquid jet in the presence of a longitudinal electric field
,”
Proc. Phys. Soc. London
75
,
369
(
1960
).
23.
J. R.
Melcher
,
Continuum Electromechanics
(
MIT
,
Cambridge, MA
,
1961
). Also available online from MIT OpenCourseWare at http://ocw.mit.edu under Creative Commons license Attribution-NonCommercial-Share Alike.
24.
Electrohydrodynamics
, edited by
A.
Castellanos
(
Springer
,
New York
,
1998
).
25.
D. A.
Saville
, “
Electrohydrodynamics: The Taylor–Melcher leaky dielectric model
,”
Annu. Rev. Fluid Mech.
29
,
27
(
1997
).
26.
D. A.
Saville
, “
Electrohydrodynamic stability: Effect of charge relaxation at the interface of a liquid jet
,”
J. Fluid Mech.
48
,
815
(
1971
).
27.
H.
Nishiumi
and
F.
Honda
, “
Effects of electrolyte on floating water bridge
,”
Res. Phys. Chem.
164502
,
2009
(
2009
).
28.
C. L.
Burcham
and
D. A.
Saville
, “
Electrohydrodynamic stability of a liquid bridge: Microgravity experiments on a liquid bridge suspended in a dielectric gas
,”
J. Fluid Mech.
405
,
37
(
2000
).
29.
S.
Tomotika
, “
On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid
,”
Proc. R. Soc. London, Ser. A
150
,
322
(
1935
).
30.
D. A.
Saville
, “
Electrohydrodynamic stability-fluid cylinders in longitudinal electric fields
,”
Phys. Fluids
13
,
2987
(
1970
).
31.
J. R.
Melcher
and
E. P.
Warren
, “
Electrohydrodynamics of a current-carrying semi-insulating jet
,”
J. Fluid Mech.
47
,
127
(
1971
).
32.
A.
Widom
,
J.
Swain
,
J.
Silverberg
,
S.
Sivasubramanian
, and
Y. N.
Srivastava
, “
Theory of the Maxwell pressure tensor and the tension in a water bridge
,”
Phys. Rev. E
80
,
016301
(
2009
).
33.
A. G.
Marín
,
I. G.
Loscertales
, and
A.
Barrero
, “
Conical tips inside cone-jet electrosprays
,”
Phys. Fluids
20
,
042102
(
2008
).
34.
O. A.
Basaran
and
L. E.
Scriven
, “
The Taylor pump: Viscous-free surface flow driven by electric shear-stress
,”
Chem. Eng. Commun.
67
,
259
(
1988
).
You do not currently have access to this content.