Discharging a liquid from a nozzle at sufficient large velocity leads to a continuous jet that due to capillary forces breaks up into droplets. Here we investigate the formation of microdroplets from the breakup of micron-sized jets with ultra high-speed imaging. The diminutive size of the jet implies a fast breakup time scale τc=ρr3/γ of the order of 100 ns, and requires imaging at 14×106frames/s. We directly compare these experiments with a numerical lubrication approximation model that incorporates inertia, surface tension, and viscosity [J. Eggers and T. F. Dupont, J. Fluid Mech.262, 205 (1994); X. D. Shi, M. P. Brenner, and S. R. Nagel, Science265, 219 (1994)]. The lubrication model allows to efficiently explore the parameter space to investigate the effect of jet velocity and liquid viscosity on the formation of satellite droplets. In the phase diagram, we identify regions where the formation of satellite droplets is suppressed. We compare the shape of the droplet at pinch-off between the lubrication approximation model and a boundary-integral calculation, showing deviations at the final moment of the pinch-off. In spite of this discrepancy, the results on pinch-off times and droplet and satellite droplet velocity obtained from the lubrication approximation agree with the high-speed imaging results.

1.
T.
Thorsen
,
R. W.
Roberts
,
F. H.
Arnold
, and
S. R.
Quake
, “
Dynamic pattern formation in a vesicle-generating microfluidic device
,”
Phys. Rev. Lett.
86
,
4163
(
2001
).
2.
V.
van Steijn
,
C. R.
Kleijn
, and
M. T.
Kreutzer
, “
Predictive model for the size of bubbles and droplets created in microfluidic T-junctions
,”
Lab Chip
10
,
2513
(
2010
).
3.
E.
Castro-Hernández
,
V.
Gundabala
,
A.
Fernández-Nieves
, and
J. M.
Gordillo
, “
Scaling the drop size in coflow experiments
,”
New J. Phys.
11
,
075021
(
2009
).
4.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
, “
Formation of dispersions using ‘flow focusing’ in microchannels
,”
Appl. Phys. Lett.
82
,
364
(
2003
).
5.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
, “
Monodisperse double emulsions generated from a microcapillary device
,”
Science
308
,
537
(
2005
).
6.
A -M.
Gañán-Calvo
,
R.
González-Prieto
,
P.
Riesco-Chueca
,
M. Ã.
Herrada
, and
M.
Flores-Mosquera
, “
Focusing capillary jets close to the continuum limit
,”
Nat. Phys.
3
,
737
(
2007
).
7.
D. B.
Bogy
, “
Drop formation in a circular liquid jet
,”
Annu. Rev. Fluid Mech.
11
,
207
(
1979
).
8.
D. M.
Mitchell
,
M. A.
Solomon
,
S. E. J.
Tolfree
,
M.
Short
, and
S. G.
Spiro
, “
Effect of particle size of bronchodilator aerosols on lung distribution and pulmonary function in patients with chronic asthma
,”
Thorax
42
,
457
(
1987
).
9.
W. D.
Bennett
,
J. S.
Brown
,
K. L.
Zeman
,
S. -C.
Hu
,
G.
Scheuch
, and
K.
Sommerer
, “
Targeting delivery of aerosols to different lung regions
,”
J. Aerosol Med.
15
,
179
(
2002
).
10.
A -M.
Gañán-Calvo
, “
Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams
,”
Phys. Rev. Lett.
80
,
285
(
1998
).
11.
O. A.
Basaran
, “
Small-scale free surface flows with breakup: Drop formation and emerging applications
,”
AIChE J.
48
,
1842
(
2002
).
12.
O. A.
Basaran
and
R.
Suryo
, “
Fluid dynamics: The invisible jet
,”
Nat. Phys.
3
,
679
(
2007
).
13.
H. P.
Le
, “
Progress and trends in ink-jet printing technology
,”
J. Imaging Sci. Technol.
42
,
49
(
1998
).
14.
Q.
Xu
and
O. A.
Basaran
, “
Computational analysis of drop-on-demand drop formation
,”
Phys. Fluids
19
,
102111
(
2007
).
15.
H.
Wijshoff
, “
The dynamics of the piezo inkjet printhead operation
,”
Phys. Rep.
491
,
77
(
2010
).
16.
K.
Tang
and
A.
Gomez
, “
Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation
,”
J. Aerosol Sci.
25
,
1237
(
1994
).
17.
D -R.
Chen
,
D. Y. H.
Pui
, and
S. L.
Kaufman
, “
Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8μm diameter range
,”
J. Aerosol Sci.
26
,
963
(
1995
).
18.
M. P.
Brenner
,
J.
Eggers
,
K.
Joseph
,
S. R.
Nagel
, and
X. D.
Shi
, “
Breakdown of scaling in droplet fission at high Reynolds number
,”
Phys. Fluids
9
,
1573
(
1997
).
19.
B.
Ambravaneswaran
,
S. D.
Phillips
, and
O. A.
Basaran
, “
Theoretical analysis of a dripping faucet
,”
Phys. Rev. Lett.
85
,
5332
(
2000
).
20.
B.
Ambravaneswaran
,
H. J.
Subramani
,
S. D.
Phillips
, and
O. A.
Basaran
, “
Dripping-jetting transitions in a dripping faucet
,”
Phys. Rev. Lett.
93
,
034501
(
2004
).
21.
P.
Coullet
,
L.
Mahadevan
, and
C. S.
Riera
, “
Hydrodynamical models for the chaotic dripping faucet
,”
J. Fluid Mech.
526
,
1
(
2005
).
22.
H. H.
Chen
and
M. P.
Brenner
, “
The optimal faucet
,”
Phys. Rev. Lett.
92
,
166106
(
2004
).
23.
S. P.
Lin
and
R. D.
Reitz
, “
Drop and spray formation from a liquid jet
,”
Annu. Rev. Fluid Mech.
30
,
85
(
1998
).
24.
J. A. F.
Plateau
, “
Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires
” (
Gauthier-Villard
,
Paris
,
1873
).
25.
L.
Rayleigh
, “
On the capillary phenomena of jets
,”
Proc. R. Soc. London
29
,
71
(
1879
).
26.
A. H.
Lefebvre
,
Atomization and Sprays
(
Hemisphere
,
New York
,
1989
).
27.
A.
Kalaaji
,
B.
Lopez
,
P.
Attané
, and
A.
Soucemarianadin
, “
Breakup length of forced liquid jets
,”
Phys. Fluids
15
,
2469
(
2003
).
28.
H.
González
and
F. J.
García
, “
The measurement of growth rates in capillary jets
,”
J. Fluid Mech.
619
,
179
(
2009
).
29.
W. T.
Pimbley
and
H. C.
Lee
, “
Satellite droplet formation in a liquid jet
,”
IBM J. Res. Dev.
21
,
21
(
1977
).
30.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
31.
E. D.
Wilkes
,
S. D.
Phillips
, and
O. A.
Basaran
, “
Computational and experimental analysis of dynamics of drop formation
,”
Phys. Fluids
11
,
3577
(
1999
).
32.
J. H.
Hilbing
and
S. D.
Heister
, “
Droplet size control in liquid jet breakup
,”
Phys. Fluids
8
,
1574
(
1996
).
33.
M.
Moseler
and
U.
Landman
, “
Formation, stability, and breakup of nanojets
,”
Science
289
,
1165
(
2000
).
34.
J.
Eggers
and
T. F.
Dupont
, “
Drop formation in a one-dimensional approximation of the Navier-Stokes equation
,”
J. Fluid Mech.
262
,
205
(
1994
).
35.
X. D.
Shi
,
M. P.
Brenner
, and
S. R.
Nagel
, “
A cascade of structure in a drop falling from a faucet
,”
Science
265
,
219
(
1994
).
36.
B.
Ambravaneswaran
,
E. D.
Wilkes
, and
O. A.
Basaran
, “
Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops
,”
Phys. Fluids
14
,
2606
(
2002
).
37.
O. E.
Yildirim
,
Q.
Xu
, and
O. A.
Basaran
, “
Analysis of the drop weight method
,”
Phys. Fluids
17
,
062107
(
2005
).
38.
E. P.
Furlani
and
M. S.
Hanchak
, “
Nonlinear analysis of the deformation and breakup of viscous microjets using the method of lines
,”
Int. J. Numer. Methods Fluids
(
2010
) (published online).
39.
When scaling all lengths with the jet radius r and time with capillary time τc, these equations only contain two dimensionless parameters: the Ohnesorge number Oh, expressing the importance of the viscous term, and the Weber number We, expressing the jet velocity.
40.
E. J.
Gutmark
and
F. F.
Grinstein
, “
Flow control with noncircular jets
,”
Annu. Rev. Fluid Mech.
31
,
239
(
1999
).
41.
C. T.
Chin
,
C.
Lancée
,
J.
Borsboom
,
F.
Mastik
,
M. E.
Frijlink
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
,
5026
(
2003
).
42.
D.
Leppinen
and
J. R.
Lister
, “
Capillary pinch-off in inviscid fluids
,”
Phys. Fluids
15
,
568
(
2003
).
43.
P. K.
Notz
,
A. U.
Chen
, and
O. A.
Basaran
, “
Satellite drops: Unexpected dynamics and change of scaling during pinch-off
,”
Phys. Fluids
13
,
549
(
2001
).
44.
A.
Chen
,
P.
Notz
, and
O. A.
Basaran
, “
Computational and experimental analysis of pinch-off and scaling
,”
Phys. Rev. Lett.
88
,
174501
(
2002
).
45.
R. F.
Day
,
E. J.
Hinch
, and
J. R.
Lister
, “
Self-similar capillary pinchoff of an inviscid fluid
,”
Phys. Rev. Lett.
80
,
704
(
1998
).
46.
S.
Gekle
,
J. M.
Gordillo
,
D.
van Der Meer
, and
D.
Lohse
, “
High-speed jet formation after solid object impact
,”
Phys. Rev. Lett.
102
,
034502
(
2009
).
You do not currently have access to this content.