The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode’s swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are supported by values obtained using resistive force theory; the ratio of normal to tangential drag coefficients is estimated to be approximately 1.4. Over the range of solutions investigated here, the flow properties remain largely independent of viscosity. Velocity magnitudes of the flow away from the nematode body decay rapidly within less than a body length and collapse onto a single master curve. Overall, our findings support that C. elegans is an attractive living model to study the coupling between small-scale propulsion and low Reynolds number hydrodynamics.

1.
E. M.
Purcell
, “
Life at low Reynolds-number
,”
Am. J. Phys.
45
,
3
(
1977
).
2.
E. M.
Purcell
, “
The efficiency of propulsion by a rotating flagellum
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
11307
(
1997
).
3.
N.
Coq
,
O.
du Roure
,
M.
Fermigier
, and
D.
Bartolo
, “
Helical beating of an actuated elastic filament
,”
J. Phys.: Condens. Matter
21
,
204109
(
2009
).
4.
J. M.
Lighthill
,
Mathematical Biofluiddynamics
(
Society for Industrial Mathematics
,
Philadelphia
,
1987
).
5.
K. E.
Machin
, “
Wave propagation along flagella
,”
J. Exp. Biol.
35
,
796
(
1958
).
6.
G.
Taylor
, “
The action of waving cylindrical tails in propelling microscopic organisms
,”
Proc. R. Soc. London, Ser. A
211
,
225
(
1952
).
7.
E.
Lauga
, “
Floppy swimming: Viscous locomotion of actuated elastica
,”
Phys. Rev. E
75
,
041916
(
2007
).
8.
C. H.
Wiggins
and
R. E.
Goldstein
, “
Flexive and propulsive dynamics of elastica at low Reynolds number
,”
Phys. Rev. Lett.
80
,
3879
(
1998
).
9.
J.
Gray
, “
The movement of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
775
(
1955
).
10.
C.
Brennen
and
H.
Winet
, “
Fluid-mechanics of propulsion by cilia and flagella
,”
Annu. Rev. Fluid Mech.
9
,
339
(
1977
).
11.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
(
1955
).
12.
B.
Qian
,
T. R.
Powers
, and
K. S.
Breuer
, “
Shape transition and propulsive force of an elastic rod rotating in a viscous fluid
,”
Phys. Rev. Lett.
100
,
078101
(
2008
).
13.
T. S.
Yu
,
E.
Lauga
, and
A. E.
Hosoi
, “
Experimental investigations of elastic tail propulsion at low Reynolds number
,”
Phys. Fluids
18
,
091701
(
2006
).
14.
M.
Kim
,
J. C.
Bird
,
A. J.
van Parys
,
K. S.
Breuer
, and
T. R.
Powers
, “
A macroscopic scale model of bacterial flagellar bundling
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
15481
(
2003
).
15.
M. J.
Kim
,
M. J.
Kim
,
J. C.
Bird
,
T. R.
Powers
, and
K. S.
Breuer
, “
Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling
,”
Exp. Fluids
37
,
782
(
2004
).
16.
J.
Yang
,
C. W.
Wolgemuth
, and
G.
Huber
, “
Kinematics of the swimming of spiroplasma
,”
Phys. Rev. Lett.
102
,
218102
(
2009
).
17.
C. H.
Wiggins
,
D.
Riveline
,
A.
Ott
, and
R. E.
Goldstein
, “
Trapping and wiggling: Elastohydrodynamics of driven microfilaments
,”
Biophys. J.
74
,
1043
(
1998
).
18.
S.
Chattopadhyay
and
X. L.
Wu
, “
The effect of long-range hydrodynamic interaction on the swimming of a single bacterium
,”
Biophys. J.
96
,
2023
(
2009
).
19.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
, “
Microscopic artificial swimmers
,”
Nature (London)
437
,
862
(
2005
).
20.
P.
Garstecki
,
P.
Tierno
,
D. B.
Weibel
,
F.
Saguès
, and
G. M.
Whitesides
, “
Propulsion of flexible polymer structures in a rotating magnetic field
,”
J. Phys.: Condens. Matter
21
,
204110
(
2009
).
21.
A.
Ghosh
and
P.
Fischer
, “
Controlled propulsion of artificial magnetic nanostructured propellers
,”
Nano Lett.
9
,
2243
(
2009
).
22.
L.
Zhang
,
J. J.
Abbott
,
L.
Dong
,
K. E.
Peyer
,
B. E.
Kratchovil
,
H.
Zhang
,
C.
Bergeles
, and
B. J.
Nelson
, “
Characterizing the swimming properties of artificial bacterial flagella
,”
Nano Lett.
9
,
3663
(
2009
).
23.
L. H.
Cisneros
,
R.
Cortez
,
C.
Dombrowski
,
R. E.
Goldstein
, and
J. O.
Kessler
, “
Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations
,”
Exp. Fluids
43
,
737
(
2007
).
24.
M. J.
Kim
and
K. S.
Breuer
, “
Controlled mixing in microfluidic systems using bacterial chemotaxis
,”
Anal. Chem.
79
,
955
(
2007
).
25.
M. J.
Kim
and
K. S.
Breuer
, “
Microfluidic pump powered by setf-organizing bacteria
,”
Small
4
,
111
(
2008
).
26.
A.
Sokolov
,
I. S.
Aranson
,
J. O.
Kessler
, and
R. E.
Goldstein
, “
Concentration dependence of the collective dynamics of swimming bacteria
,”
Phys. Rev. Lett.
98
,
158102
(
2007
).
27.
E. B.
Steager
,
J. A.
Patel
,
C. -B.
Kim
,
D. K.
Yi
,
W.
Lee
, and
M. J.
Kim
, “
A novel method of microfabrication and manipulation of bacterial teamsters in low Reynolds number fluidic environments
,”
Microfluid. Nanofluid.
5
,
337
(
2008
).
28.
I. S.
Aranson
,
A.
Sokolov
,
J. O.
Kessler
, and
R. E.
Goldstein
, “
Model for dynamical coherence in thin films of self-propelled microorganisms
,”
Phys. Rev. E
75
,
040901
(
2007
).
29.
D.
Saintillan
and
M. J.
Shelley
, “
Instabilities, pattern formation, and mixing in active suspensions
,”
Phys. Fluids
20
,
123304
(
2008
).
30.
D.
Saintillan
and
M. J.
Shelley
, “
Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations
,”
Phys. Rev. Lett.
100
,
178103
(
2008
).
31.
P. T.
Underhill
,
J. P.
Hernandez-Ortiz
, and
M. D.
Graham
, “
Diffusion and spatial correlations in suspensions of swimming particles
,”
Phys. Rev. Lett.
100
,
248101
(
2008
).
32.
J. P.
Hernandez-Ortiz
,
P. T.
Underhill
, and
M. D.
Graham
, “
Dynamics of confined suspensions of swimming particules
,”
J. Phys.: Condens. Matter
21
,
204107
(
2009
).
33.
J.
Gray
,
Animal Locomotion. The World Naturalist
(
Norton
,
New York
,
1968
).
34.
J.
Gray
and
H. W.
Lissmann
, “
The locomotion of nematodes
,”
J. Exp. Biol.
41
,
135
(
1964
).
35.
S.
Brenner
, “
Genetics of caenorhabditis-elegans
,”
Genetics
77
,
71
(
1974
).
36.
C. Elegans Sequencing Consortium
, “
Genome sequence of the nematode C-elegans: A platform for investigating biology
,”
Science
282
,
2012
(
1998
).
37.
J.
Sznitman
,
X.
Shen
,
P. K.
Purohit
, and
P. E.
Arratia
, “
The effects of fluid viscosity on the kinematics and material properties of C. elegans swimming at low Reynolds number
,”
Exp. Mech.
50
,
1303
(
2010
).
38.
J.
Sznitman
,
P. K.
Purohit
,
P.
Krajacic
,
T.
Lamitina
, and
P. E.
Arratia
, “
Material properties of caenorhabditis elegans swimming at low Reynolds number
,”
Biophys. J.
98
,
617
(
2010
).
39.
W. K.
Pratt
,
Digital Image Processing
, 2nd ed. (
Wiley
,
New York
,
1991
).
40.
X. C.
He
and
N. H. C.
Yung
, “
Curvature scale space corner detector with adaptive threshold and dynamic region of support
,”
IEEE Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04)
,
2004
, Vol.
2
, pp.
791
794
.
41.
C.
Andrieu
,
N.
de Freitas
,
A.
Doucet
, and
M. I.
Jordan
, “
An introduction to MCMC for machine learning
,”
Mach. Learn.
50
,
5
(
2003
).
42.
N.
Tavernarakis
,
W.
Schreffler
,
S.
Wang
, and
M.
Driscoll
, “
unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C-elegans locomotion
,”
Neuron
18
,
107
(
1997
).
43.
J. G.
Santiago
,
S. T.
Wereley
,
C. D.
Meinhart
,
D. J.
Beebe
, and
R. J.
Adrian
, “
A particle image velocimetry system for microfluidics
,”
Exp. Fluids
25
,
316
(
1998
).
44.
J.
Karbowski
,
C. J.
Cronin
,
A.
Seah
,
J. E.
Mendel
,
D.
Cleary
, and
P. W.
Sternberg
, “
Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion
,”
J. Theor. Biol.
242
,
652
(
2006
).
45.
J.
Korta
,
D. A.
Clark
,
C. V.
Gabel
,
L.
Mahadevan
, and
A. D.
Samuel
, “
Mechanosensation and mechanical load modulate the locomotory gait of swimming C-elegans
,”
J. Exp. Biol.
210
,
2383
(
2007
).
46.
J. T.
Pierce-Shimomura
,
B. L.
Chen
,
J. J.
Mun
,
R.
Ho
,
R.
Sarkis
, and
S. L.
McIntire
, “
Genetic analysis of crawling and swimming locomotory patterns in C. elegans
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
20982
(
2008
).
47.
D. F.
Katz
,
J. R.
Blake
, and
S. L.
Paverifontana
, “
On the movement of slender bodies near plane boundaries at low Reynolds-number
,”
J. Fluid Mech.
72
,
529
(
1975
).
48.
J.
Lighthill
, “
Flagellar hydrodynamics
,”
SIAM Rev.
18
,
161
(
1976
).
49.
E. O.
Tuck
, “
A note on a swimming problem
,”
J. Fluid Mech.
31
,
305
(
1968
).
50.
J. C.
Doll
,
N.
Harjee
,
N.
Klejwa
,
R.
Kwon
,
S. M.
Coulthard
,
B.
Petzold
,
M. B.
Goodman
, and
B. L.
Pruitt
, “
SU-8 force sensing pillar arrays for biological measurements
,”
Lab Chip
9
,
1449
(
2009
).
You do not currently have access to this content.