We present a numerical study of incremental spin-up of a thermally stratified fluid enclosed within a right circular cylinder with rigid bottom and side walls and stress-free upper surface. This investigation reveals a feasibility for transition from an axisymmetric initial circulation to nonaxisymmetric flow patterns, and it is motivated by the desire to compare the spin-up for Dirichlet and Neumann thermal boundary conditions. The numerical simulations demonstrate that the destabilizing mechanism is not purely baroclinic but that vertical and horizontal shears may contribute to the instability. By characterizing the azimuthal instabilities without introducing any simplification, we were able to assess to what extent an insulating boundary condition changes the time-dependent emergence of the instability. Our results agree with previous experimental data and provide a framework for understanding the role played by the baroclinic vorticity in the development of instabilities in thermally stratified incremental spin-up flows.

1.
E. R.
Benton
and
A.
Clark
, “
Spin-up
,”
Annu. Rev. Fluid Mech.
6
,
257
(
1974
).
2.
P. F.
Linden
and
G. J. F.
van Heijst
, “
Two-layer spin-up and frontogenesis
,”
J. Fluid Mech.
143
,
69
(
1984
).
3.
J. S.
Allen
, “
Upwelling and coastal jets in a continuously stratified ocean
,”
J. Phys. Oceanogr.
3
,
245
(
1973
).
4.
D. L.
Boyer
,
D.
Sous
, and
J.
Sommeria
, “
Laboratory experiments on along-slope flows in homogeneous and stratified rotating fluids
,”
Dyn. Atmos. Oceans
46
,
19
(
2009
).
5.
C.
Garrett
,
P.
MacCready
, and
P.
Rhines
, “
Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary
,”
Annu. Rev. Fluid Mech.
25
,
291
(
1993
).
6.
T. O.
Manley
and
H.
Hunkins
, “
Mesoscale eddies of the arctic ocean
,”
J. Geophys. Res.
90
,
4911
(
1985
).
7.
J. C.
McWilliams
, “
Submesoscale, coherent vortices in the ocean
,”
Rev. Geophys.
23
,
165
(
1985
).
8.
D. B.
Olson
, “
Rings in the ocean
,”
Annu. Rev. Earth Planet. Sci.
19
,
283
(
1991
).
9.
F. Y.
Moulin
and
J. -B.
Flór
, “
On the spin-up by a rotating disk in a rotating stratified fluid
,”
J. Fluid Mech.
516
,
155
(
2004
).
10.
M.
Ungarish
and
J.
Mang
, “
The flow field and bare-spot formation in spin-up from rest of a two-layer fluid about a vertical axis
,”
J. Fluid Mech.
474
,
117
(
2003
).
11.
M. A.
Hallworth
,
H. E.
Huppert
, and
M.
Ungarish
, “
Axisymmetric gravity currents in a rotating system: Experimental and numerical investigations
,”
J. Fluid Mech.
447
,
1
(
2001
).
12.
A.
Mahalov
,
J. R.
Pacheco
,
S. I.
Voropayev
,
H. J. S.
Fernando
, and
J. C. R.
Hunt
, “
Effects of rotation on fronts of density currents
,”
Phys. Lett. A
270
,
149
(
2000
).
13.
J. C. R.
Hunt
,
J. R.
Pacheco
,
A.
Mahalov
, and
H. J. S.
Fernando
, “
Effects of rotation and sloping terrain on the fronts of density currents
,”
J. Fluid Mech.
537
,
285
(
2005
).
14.
P. W.
Duck
and
M. R.
Foster
, “
Spin-up of homogeneous and stratified fluids
,”
Annu. Rev. Fluid Mech.
33
,
231
(
2001
).
15.
H. P.
Greenspan
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
Cambridge
,
1968
).
16.
G.
Buzyna
and
G.
Veronis
, “
Spin-up of a stratified fluid: Theory and experiment
,”
J. Fluid Mech.
50
,
579
(
1971
).
17.
H. P.
Greenspan
, “
A note on the spin-up from rest of a stratified fluid
,”
Geophys. Fluid Dyn.
15
,
1
(
1980
).
18.
J. -B.
Flór
,
J. W. M.
Bush
, and
M.
Ungarish
, “
An experimental investigation of spin-up from rest of a stratified fluid
,”
Geophys. Fluid Dyn.
98
,
277
(
2004
).
19.
R. W.
Griffiths
and
P. F.
Linden
, “
The stability of buoyancy-driven coastal currents
,”
Dyn. Atmos. Oceans
5
,
281
(
1981
).
20.
J. -B.
Flór
,
M.
Ungarish
, and
J. W. M.
Bush
, “
Spin-up from rest in a stratified fluid: Boundary flows
,”
J. Fluid Mech.
472
,
51
(
2002
).
21.
I.
Kanda
, “
A laboratory study of columnar baroclinic vortices in a continuously stratified fluid
,”
Dyn. Atmos. Oceans
38
,
69
(
2004
).
22.
S. A.
Smirnov
,
P. G.
Baines
,
D. L.
Boyer
,
S. I.
Voropayev
, and
A. N.
Srdić-Mitrović
, “
Long-time evolution of linearly stratified spin-up flows in axisymmetric geometries
,”
Phys. Fluids
17
,
016601
(
2005
).
23.
S. A.
Smirnov
,
D. L.
Boyer
, and
P. G.
Baines
, “
Nonaxisymmetric effects of stratified spin-up in an axisymmetric annular channel
,”
Phys. Fluids
17
,
086601
(
2005
).
24.
R. E.
Hewitt
,
P. A.
Davies
,
P. W.
Duck
, and
M. R.
Foster
, “
Spin-up of stratified rotating flows at large Schmidt number: Experiment and theory
,”
J. Fluid Mech.
389
,
169
(
1999
).
25.
A.
Barcilon
,
J.
Lau
,
S.
Piacsek
, and
A.
Warn-Varnas
, “
Numerical experiments on stratified spin-up
,”
Geophys. Fluid Dyn.
7
,
29
(
1975
).
26.
W. B.
Watkins
and
R. G.
Hussey
, “
Spin-up from rest in a cylinder
,”
Phys. Fluids
20
,
1596
(
1977
).
27.
A.
Warn-Varnas
,
W. W.
Fowlis
,
S.
Piacsek
, and
S. M.
Lee
, “
Numerical solutions and laser-Dopler measurements of spin-up
,”
J. Fluid Mech.
85
,
609
(
1978
).
28.
R. C.
Beardsley
,
K. D.
Saunders
,
A. C.
Warn-Varnas
, and
J. M.
Harding
, “
An experimental and numerical study of the secular spin-up of a thermally stratified rotating fluid
,”
J. Fluid Mech.
93
,
161
(
1979
).
29.
C. W.
Kitchens
, Jr.
, “
Navier–Stokes solutions for spin-up in a filled cylinder
,”
AIAA J.
18
,
929
(
1980
).
30.
G. P.
Neitzel
and
S. H.
Davis
, “
Centrifugal instabilities during spin-down to rest in finite cylinders. Numerical experiments
,”
J. Fluid Mech.
102
,
329
(
1981
).
31.
J. M.
Hyun
,
W. W.
Fowlis
, and
A.
Warn-Varnas
, “
Numerical solutions for the spin-up of a stratified fluid
,”
J. Fluid Mech.
117
,
71
(
1982
).
32.
S.
Ibrani
and
H.
Dwyer
, “
Flow interactions during axisymmetric spinup
,”
AIAA J.
25
,
1305
(
1987
).
33.
J. M.
Lopez
and
P. D.
Weidman
, “
Stability of stationary endwall boundary layers during spin-down
,”
J. Fluid Mech.
326
,
373
(
1996
).
34.
J. A.
van de Konijnenberg
,
A. H.
Nielsen
,
J. J.
Rasmussen
, and
B.
Stenum
, “
Shear-flow instability in a rotating fluid
,”
J. Fluid Mech.
387
,
177
(
1999
).
35.
L. N.
Thomas
and
P. B.
Rhines
, “
Nonlinear stratified spin-up
,”
J. Fluid Mech.
473
,
211
(
2002
).
36.
A. Y.
Gelfgat
,
P. Z.
Bar-Yoseph
, and
A.
Solan
, “
Three-dimensional instability of axisymmetric flow in a rotating lid-cylinder enclosure
,”
J. Fluid Mech.
438
,
363
(
2001
).
37.
J. M.
Lopez
, “
Rotating and modulated rotating waves in transitions of an enclosed swirling flow
,”
J. Fluid Mech.
553
,
323
(
2006
).
38.
J. M.
Lopez
,
J. E.
Hart
,
F.
Marques
,
S.
Kittelman
, and
J.
Shen
, “
Centrifugal effects in rotating convection: Nonlinear dynamics
,”
J. Fluid Mech.
462
,
383
(
2002
).
39.
D. K.
Lilly
, “
On the instability of Ekman boundary flow
,”
J. Atmos. Sci.
23
,
481
(
1966
).
40.
D. R.
Caldwell
and
C. W.
Van Atta
, “
Characteristics of Ekman boundary layer instabilities
,”
J. Fluid Mech.
44
,
79
(
1970
).
41.
E.
Ferrero
,
A.
Longhetto
,
L.
Montabone
,
L.
Mortarini
,
M.
Manfrin
,
J.
Sommeria
,
H.
Didelle
,
C.
Giraud
, and
U. U.
Rizza
, “
Physical simulations of neutral boundary layer in rotating tank
,”
Il Nuovo Cimento C
28
,
1
(
2005
).
42.
A. E.
Gill
,
Atmosphere-Ocean Dynamics
(
Academic
,
San Diego
,
1982
).
43.
J. M.
Lopez
and
F.
Marques
, “
Centrifugal effects in rotating convection: Nonlinear dynamics
,”
J. Fluid Mech.
628
,
269
(
2009
).
44.
K.
Sugiyama
,
E.
Calzavarini
,
S.
Grossmann
, and
D.
Lohse
, “
Flow organization in two-dimensional non-Oberbeck-Boussinesq Rayleigh–Bénard convection in water
,”
J. Fluid Mech.
637
,
105
(
2009
).
45.
R.
Verzicco
,
F.
Lalli
, and
E.
Campana
, “
Dynamics of baroclinic vortices in a rotating stratified fluid: A numerical study
,”
Phys. Fluids
9
,
419
(
1997
).
46.
R. E.
Lynch
,
J. R.
Rice
, and
D. H.
Thomas
, “
Tensor product analysis of partial difference equations
,”
Bull. Am. Math. Soc.
70
,
378
(
1964
).
47.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
,
Proceedings of the 1988 CTR Summer Program
, Stanford, CA,
1988
, p.
193
.
48.
P.
Chakraborty
,
S.
Balachandar
, and
R. J.
Adrian
, “
On the relationships between local vortex identification schemes
,”
J. Fluid Mech.
535
,
189
(
2005
).
49.
M. E.
McIntyre
, “
Diffusive destabilisation of the baroclinic circular vortex
,”
Geophys. Astrophys. Fluid Dyn.
1
,
19
(
1970
).
You do not currently have access to this content.