This paper presents a numerical and experimental study of capillary wave motion excited by high frequency surface acoustic waves (SAWs). The objective of this study is to provide insight into the dynamic behavior of the fluid free surface and its dependence on the excitation amplitude. A two-dimensional numerical model that couples the motion of the piezoelectric substrate to a thin liquid layer atop the substrate is constructed. A perturbation method, in the limit of small-amplitude acoustic waves, is used to decompose the equations governing fluid motion to resolve the widely differing time scales associated with the high frequency excitation. While this model focuses on the free surface dynamics in the low-amplitude flow regime, the experimental study focuses on the high-amplitude flow regime. Transformation of time series data from both experiments and simulations into the frequency domain reveals that, in the low-amplitude regime, a fundamental resonant frequency and a superharmonic frequency are found in the frequency spectra. The former is found to be identical to that of the applied SAW, and the free surface displacement magnitude is comparable to that of the substrate displacement. Our numerical results also confirm previous speculation that the separation distance between two displacement antinodal points on the free surface is δStλSAW/2 for a film and δStλf/2 for a drop, where λSAW and λf denote the SAW wavelength and the acoustic wavelength in the fluid, respectively. Finally, in the high-amplitude regime, strong nonlinearities shift the acoustic energy to a lower frequency than that of the SAW; this low-frequency broadband response, quite contrary to the subharmonic half-frequency capillary wave excitation predicted by the classical linear or weakly nonlinear Faraday theories, is supported by a scaling analysis of the momentum equations.

1.
L. Y.
Yeo
and
J. R.
Friend
, “
Ultrafast microfluidics using surface acoustic waves
,”
Biomicrofluidics
3
,
012002
(
2009
).
2.
H.
Li
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Surface acoustic wave concentration of particle and bioparticle suspensions
,”
Biomed. Microdevices
9
,
647
(
2007
).
3.
R.
Shilton
,
M. K.
Tan
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Particle concentration and mixing in microdrops driven by focused surface acoustic waves
,”
J. Appl. Phys.
104
,
014910
(
2008
).
4.
W. K.
Tseng
,
J. L.
Lin
,
W. C.
Sung
,
S. H.
Chen
, and
G. B.
Lee
, “
Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3
,”
J. Micromech. Microeng.
16
,
539
(
2006
).
5.
M.
Cecchini
,
S.
Girardo
,
D.
Pisignano
,
R.
Cingolani
, and
F.
Beltram
, “
Acoustic-counterflow microfluidics by surface acoustic waves
,”
Appl. Phys. Lett.
92
,
104103
(
2008
).
6.
M. K.
Tan
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Rapid microchannel fluid actuation and particle manipulation induced by surface acoustic waves
,”
Europhys. Lett.
87
,
47003
(
2009
).
7.
G.
McHale
,
M. K.
Banerjee
, and
M. I.
Newton
, “
Surface acoustic wave resonances in the spreading of viscous fluids
,”
Phys. Rev. B
59
,
8262
(
1999
).
8.
A.
Wixforth
,
C.
Strobl
,
C.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z. v.
Guttenberg
, “
Acoustic manipulation of small droplets
,”
Anal. Bioanal. Chem.
379
,
982
(
2004
).
9.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Microparticle collection and concentration via a miniature surface acoustic wave device
,”
Lab Chip
7
,
618
(
2007
).
10.
N.
Shimizu
,
J.
Kondoh
,
Y.
Matsui
, and
S.
Shiokawa
, “
Localized heating effects of liquid based on saw streaming
,”
Proceedings of the 2004 IEEE Ultrasonics Symposium
(
IEEE
,
Los Alamitos, CA
,
2004
), Vol.
3
, pp.
2235
2238
.
11.
J.
Kondoh
,
N.
Shimizu
,
Y.
Matsui
,
M.
Sugimoto
, and
S.
Shiokawa
, “
Development of temperature-control system for liquid droplet using surface acoustic wave devices
,”
Sens. Actuators, A
149
,
292
(
2009
).
12.
K.
Kulkarni
,
J.
Friend
,
L.
Yeo
, and
P.
Perlmutter
, “
Surface acoustic waves as an energy source for drop scale synthetic chemistry
,”
Lab Chip
9
,
754
(
2009
).
13.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Interfacial jetting phenomena induced by focused surface vibrations
,”
Phys. Rev. Lett.
103
,
024501
(
2009
).
14.
M.
Kurosawa
,
T.
Watanabe
,
A.
Futami
, and
T.
Higuchi
, “
Surface acoustic wave atomizer
,”
Sens. Actuators, A
50
,
69
(
1995
).
15.
K.
Chono
,
N.
Shimizu
,
Y.
Matsui
,
J.
Kondoh
, and
S.
Shiokawa
, “
Development of novel atomization system based on SAW streaming
,”
Jpn. J. Appl. Phys.
43
,
2987
(
2004
).
16.
A.
Qi
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Interfacial destabilization and atomization driven by surface acoustic waves
,”
Phys. Fluids
20
,
074103
(
2008
).
17.
J. W.
Kim
,
Y.
Yamagata
,
M.
Takasaki
,
B. H.
Lee
,
H.
Ohmori
, and
T.
Higuchi
, “
A device for fabricating protein chips by using surface acoustic wave atomizer and electrostatic deposition
,”
Sens. Actuators B
107
,
535
(
2005
).
18.
M.
Alvarez
,
J.
Friend
, and
L. Y.
Yeo
, “
Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization
,”
Nanotechnology
19
,
455103
(
2008
).
19.
A.
Qi
,
J. R.
Friend
,
L. Y.
Yeo
,
D. A. V.
Morton
,
M. P.
McIntosh
, and
L.
Spiccia
, “
Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization
,”
Lab Chip
9
,
2184
(
2009
).
20.
M.
Alvarez
,
J.
Friend
, and
L. Y.
Yeo
, “
Surface vibration induced spatial ordering of periodic polymer patterns on a substrate
,”
Langmuir
24
,
10629
(
2008
).
21.
A.
Qi
,
L. Y.
Yeo
,
J. R.
Friend
, and
J.
Ho
, “
The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization
,”
Lab Chip
10
,
470
(
2010
).
22.
M.
Faraday
, “
On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces
,”
Philos. Trans. R. Soc. London
121
,
299
(
1831
).
23.
T. B.
Benjamin
and
F.
Ursell
, “
The stability of the plane free surface of a liquid in vertical periodic motion
,”
Proc. R. Soc. London, Ser. A
225
,
505
(
1954
).
24.
W.
Eisenmenger
, “
Dynamic properties of the surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10 Kc/S to 1.5 Mc/S
,”
Acustica
9
,
327
(
1959
).
25.
J.
Miles
and
D.
Henderson
, “
Parametrically forced surface waves
,”
Annu. Rev. Fluid Mech.
22
,
143
(
1990
).
26.
K.
Kumar
and
L. S.
Tuckerman
, “
Parametric instability of the interface between two fluids
,”
J. Fluid Mech.
279
,
49
(
1994
).
27.
K.
Kumar
, “
Linear theory of Faraday instability in viscous liquids
,”
Proc. R. Soc. London, Ser. A
452
,
1113
(
1996
).
28.
H. W.
Müller
,
H.
Wittmer
,
C.
Wagner
,
J.
Albers
, and
K.
Knorr
, “
Analytic stability theory for Faraday waves and the observation of the harmonic surface response
,”
Phys. Rev. Lett.
78
,
2357
(
1997
).
29.
R.
Keolian
,
L. A.
Turkevich
,
S. J.
Putterman
, and
I.
Rudnick
, “
Subharmonic sequences in the Faraday experiment: departures from period doubling
,”
Phys. Rev. Lett.
47
,
1133
(
1981
).
30.
P.
Chen
and
J.
Viñals
, “
Amplitude equation and pattern selection in Faraday waves
,”
Phys. Rev. E
60
,
559
(
1999
).
31.
A. M.
Rucklidge
, “
Pattern formation in large domains
,”
Philos. Trans. R. Soc. London, Ser. A
361
,
2649
(
2003
).
32.
J.
Lighthill
,
Waves in Fluids
(
Cambridge University
,
Cambridge
,
1978
).
33.
M. S.
Longuet-Higgins
, “
The instabilities of gravity waves of finite amplitude in deep water: I. Superharmonics
,”
Proc. R. Soc. London, Ser. A
360
,
471
(
1978
).
34.
M. S.
Longuet-Higgins
, “
The instabilities of gravity waves of finite amplitude in deep water: I. Subharmonics
,”
Proc. R. Soc. London, Ser. A
360
,
489
(
1978
).
35.
J.
Lucassen
, “
Longitudinal capillary waves. Part 1—Theory
,”
Trans. Faraday Soc.
64
,
2221
(
1968
).
36.
J.
Lucassen
, “
Longitudinal capillary waves. Part 2—Experiment
,”
Trans. Faraday Soc.
64
,
2230
(
1968
).
37.
J. A.
De Feijter
, “
The propagation of surface shear waves: 1. Theory
,”
J. Colloid Interface Sci.
69
,
375
(
1979
).
38.
D.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
,
3
(
1984
).
39.
O.
Lioubashevski
,
J.
Fineberg
, and
L. S.
Tuckerman
, “
Scaling of the transition to parametrically driven surface waves in highly dissipative systems
,”
Phys. Rev. E
55
,
R3832
(
1997
).
40.
E.
Cerda
and
E.
Tirapegui
, “
Faraday’s instability in viscous fluid
,”
J. Fluid Mech.
368
,
195
(
1998
).
41.
S.
Kumar
, “
Mechanism for the Faraday instability in viscous liquids
,”
Phys. Rev. E
62
,
1416
(
2000
).
42.
A. J.
James
,
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Vibration-induced drop atomization and bursting
,”
J. Fluid Mech.
476
,
1
(
2003
).
43.
M. Y.
Brazhnikov
,
G. V.
Kolmakov
,
A. A.
Levchenko
, and
L. P.
Mezhov-Deglin
, “
Observation of capillary turbulence on the water surface in a wide range of frequencies
,”
Europhys. Lett.
58
,
510
(
2002
).
44.
K.
Naugolnykh
and
L.
Ostrovsky
,
Nonlinear Wave Processes in Acoustics
(
Cambridge University
,
Cambridge
,
1998
).
45.
M.
Schindler
,
P.
Talker
, and
P.
Hänggi
, “
Computing stationary free-surface shapes in microfluidics
,”
Phys. Fluids
18
,
103303
(
2006
).
46.
D.
Köster
, “
Numerical simulation of acoustic streaming on surface acoustic wave-driven biochips
,”
SIAM J. Sci. Comput. (USA)
29
,
2352
(
2007
).
47.
W. L.
Nyborg
, in
Acoustic Streaming
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic
,
San Diego, CA
,
1965
), Chap. 11, pp.
265
329
.
48.
L. D.
Rozenberg
,
High-Intensity Ultrasonic Fields
(
Plenum
,
New York
,
1971
).
49.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
50.
C. E.
Bradley
, “
Acoustic streaming field structure: The influence of the radiator
,”
J. Acoust. Soc. Am.
100
,
1399
(
1996
).
51.
L.
Dong
,
A.
Chaudhury
, and
M. K.
Chaudhury
, “
Lateral vibration of a water drop and its motion on a vibrating surface
,”
Eur. Phys. J. E
21
,
231
(
2006
).
52.
P.
Brunet
,
M.
Baudoin
,
O. B.
Matar
, and
F.
Zoueshtiagh
, “
Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: A qualitative study
,”
Phys. Rev. E
81
,
036315
(
2010
).
53.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
Wiley
,
New York
,
1973
), Vol.
1
.
54.
H. F.
Tiersten
, “
Wave propagation in an infinite piezoelectric plate
,”
J. Acoust. Soc. Am.
35
,
234
(
1963
).
55.
F.
Chagla
and
P. M.
Smith
, “
Finite difference time domain methods for piezoelectric crystals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1895
(
2006
).
56.
R. T.
Beyer
, in
Nonlinear Acoustics: The Parameter B/A
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
,
New York
,
1998
), Chap. 2, pp.
25
40
.
57.
F. V.
Hunt
, “
Notes on the exact equations governing the propagation of sound in fluids
,”
J. Acoust. Soc. Am.
27
,
1019
(
1955
).
58.
C. T.
Schröder
and
W. R.
Scott
, “
A finite-difference model to study the elastic wave interaction with buried land mines
,”
IEEE Trans. Geosci. Remote Sens.
38
,
1505
(
2000
).
59.
F.
Collino
and
C.
Tsogko
, “
Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media
,”
Geophysics
66
,
294
(
2001
).
60.
D.
Botteldooren
, “
Vorticity and entropy boundary conditions for acoustical finite-difference time-domain simulations
,”
J. Acoust. Soc. Am.
102
,
170
(
1997
).
61.
J. D.
Anderson
,
Computational Fluid Dynamics: The Basics with Application
(
McGraw-Hill
,
New York
,
1995
), p.
261
.
62.
O. V.
Rudenko
and
S. I.
Soluyan
,
Theoretical Foundations of Nonlinear Acoustics
(
Consultants Bureau
,
New York
,
1977
).
63.
H.
Li
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation
,”
Phys. Rev. Lett.
101
,
084502
(
2008
).
64.
A. D.
Heathershaw
, “
Seabed-wave resonance and sand bar growth
,”
Nature (London)
296
,
343
(
1982
).
65.
C.
Sarasola
,
F. J.
Torrealdea
,
A.
d’Anjou
,
A.
Moujahid
, and
M.
Graña
, “
Energy balance in feedback synchronization of chaotic systems
,”
Phys. Rev. E
69
,
011606
(
2004
).
66.
D.
Binks
,
M. T.
Westra
, and
W.
van de Water
, “
Effect of depth on the pattern formation of Faraday waves
,”
Phys. Rev. Lett.
79
,
5010
(
1997
).
67.
B.
Christiansen
and
M. T.
Alstrøm Levinsen
, “
Ordered capillary-wave states: quasicrystals, hexagons, and radial waves
,”
Phys. Rev. Lett.
68
,
2157
(
1992
).
68.
H.
Arbell
and
J.
Fineberg
, “
Pattern formation in two-frequency parametric waves
,”
Phys. Rev. E
65
,
036224
(
2002
).
69.
C. K.
Campbell
,
Surface Acoustic Wave Devices
(
Academic
,
London
,
1998
).
70.
K. Y.
Hashimoto
,
Surface Acoustic Wave Devices in Telecommunications
(
Springer-Verlag
,
Berlin
,
2000
).
71.
J.
Friend
and
L.
Yeo
, “
Using laser Doppler vibrometry to measure capillary surface waves on fluid-fluid interfaces
,”
Biomicrofluidics
4
,
026501
(
2010
).
72.
O.
Lioubashevski
,
H.
Arbell
, and
J.
Fineberg
, “
Dissipative solitary states in driven surface waves
,”
Phys. Rev. Lett.
76
,
3959
(
1996
).
73.
L.
Menguy
and
J.
Gilbert
, “
Non-linear acoustic streaming accompanying a plane stationary wave in a guide
,”
Acustica
86
,
249
(
2000
).
74.
J. W. S.
Rayleigh
,
Theory of Sound
(
Dover
,
Toronto
,
1945
), Vol.
2
.
75.
P. J.
Westervelt
, “
The theory of steady rotational flow generated by a sound field
,”
J. Acoust. Soc. Am.
25
,
60
(
1953
).
76.
S. J.
Lighthill
, “
Acoustic streaming
,”
J. Sound Vib.
61
,
391
(
1978
).
77.
G.
Falkovich
,
A.
Weinberg
,
P.
Denissenko
, and
S.
Lukaschuk
, “
Floater clustering in a standing wave
,”
Nature (London)
435
,
1045
(
2005
).
You do not currently have access to this content.