We present a theoretical study of the evolution of a drop of pure liquid on a solid substrate, which it wets completely. In a situation where evaporation is significant, the drop does not spread, but instead the drop radius goes to zero in finite time. Our description couples the viscous flow problem to a self-consistent thermodynamic description of evaporation from the drop and its precursor film. The evaporation rate is limited by the diffusion of vapor into the surrounding atmosphere. For flat drops, we compute the evaporation rate as a nonlocal integral operator of the drop shape. Together with a lubrication description of the flow, this permits an efficient numerical description of the final stages of the evaporation problem. We find that the drop radius goes to zero like R(t0t)α, where α has value close to 1/2, in agreement with experiment.

1.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
(
1997
).
2.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Contact line deposits in an evaporating drop
,”
Phys. Rev. E
62
,
756
(
2000
).
3.
R. D.
Deegan
, “
Pattern formation in drying drops
,”
Phys. Rev. E
61
,
475
(
2000
).
4.
M.
Cachile
,
O.
Benichou
, and
A. -M.
Cazabat
, “
Evaporating droplets of completely wetting liquids
,”
Langmuir
18
,
7985
(
2002
).
5.
M.
Cachile
,
O.
Benichou
,
C.
Poulard
, and
A. -M.
Cazabat
, “
Evaporating droplets
,”
Langmuir
18
,
8070
(
2002
).
6.
C.
Poulard
,
O.
Benichou
, and
A. -M.
Cazabat
, “
Freely receding evaporating droplets
,”
Langmuir
19
,
8828
(
2003
).
7.
N.
Shahidzadeh-Bonn
,
S.
Rafaï
,
A.
Azouni
, and
D.
Bonn
, “
Evaporating droplets
,”
J. Fluid Mech.
549
,
307
(
2006
).
8.
C.
Poulard
,
G.
Guena
,
A. -M.
Cazabat
,
A.
Boudaoud
, and
M.
Ben Amar
, “
Rescaling the dynamics of evaporating drops
,”
Langmuir
21
,
8226
(
2005
).
9.
N.
Murisic
and
L.
Kondic
, “
Modeling evaporation of sessile drops with moving contact lines
,”
Phys. Rev. E
78
,
065301
(
2008
).
10.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
11.
S.
Maheshwari
,
L.
Zhang
,
Y.
Zhu
, and
H. -C.
Chang
, “
Coupling between precipitation and contact-line dynamics: Multiring stains and stick-slip motion
,”
Phys. Rev. Lett.
100
,
044503
(
2008
).
12.
K.
Sefiane
,
S. K.
Wilson
,
S.
David
,
G. J.
Dunn
, and
B. R.
Duffy
, “
On the effect of the atmosphere on the evaporation of sessile droplets of water
,”
Phys. Fluids
21
,
062101
(
2009
).
13.
D. M.
Anderson
and
S. H.
Davis
, “
The spreading of volatile liquid droplets on heated surfaces
,”
Phys. Fluids
7
,
248
(
1995
).
14.
L. M.
Hocking
, “
On contact angles in evaporating liquids
,”
Phys. Fluids
7
,
2950
(
1995
).
15.
S. J. S.
Morris
, “
A phenomenological model for the contact region of an evaporating meniscus on a superheated slab
,”
J. Fluid Mech.
411
,
59
(
2000
).
16.
R. M.
Ybarra
and
P.
Neogi
, “
Dynamic contact angles under evaporation
,”
J. Chem. Phys.
120
,
5755
(
2004
).
17.
W. D.
Ristenpart
,
P. G.
Kim
,
C.
Domingues
,
J.
Wan
, and
H. A.
Stone
, “
Influence of substrate conductivity on circulation reversal in evaporating drops
,”
Phys. Rev. Lett.
99
,
234502
(
2007
).
18.
C.
Sodtke
,
V. S.
Ajaev
, and
P.
Stephan
, “
Dynamics of volatile liquid droplets on heated surfaces: Theory versus experiment
,”
J. Fluid Mech.
610
,
343
(
2008
).
19.
J. P.
Burelbach
,
S. G.
Bankoff
, and
S. H.
Davis
, “
Nonlinear stability of evaporating/condensing liquid films
,”
J. Fluid Mech.
195
,
463
(
1988
).
20.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1975
).
21.
I. N.
Sneddon
,
Elements of Partial Differential Equations
(
McGraw-Hill
,
New York
,
1957
).
22.
E. A.
Guggenheim
,
Thermodynamics
(
North Holland
,
Amsterdam
,
1967
).
23.
L. M.
Pismen
, “
Spinodal dewetting in a volatile liquid film
,”
Phys. Rev. E
70
,
021601
(
2004
).
24.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
25.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals Series and Products
(
Academic
,
New York
,
1980
).
26.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1984
).
27.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
28.
J.
Eggers
and
T. F.
Dupont
, “
Drop formation in a one-dimensional approximation of the Navier–Stokes equation
,”
J. Fluid Mech.
262
,
205
(
1994
).
29.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1968
).
30.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1962
).
You do not currently have access to this content.