Nanofluidic technology is gaining popularity for bioanalytical applications due to advances in both nanofabrication and design. One major obstacle in the widespread adoption of such technology for bioanalytical systems is efficient detection of samples due to the inherently low analyte concentrations present in such systems. This problem is exacerbated by the push for electronic detection, which requires an even higher sensor-local sample concentration than optical detection. This paper explores one of the most common preconcentration techniques, field-amplified sample stacking, in nanofluidic systems in efforts to alleviate this obstacle. Holding the ratio of background electrolyte concentrations constant, the parameters of channel height, strength of electric field, and concentration are varied. Although in micron scale systems, these parameters have little or no effect on the final concentration enhancement achieved, nanofluidic experiments show strong dependencies on each of these parameters. Further, nanofluidic systems demonstrate an increased concentration enhancement over what is predicted and realized in microscale counterparts. Accordingly, a depth-averaged theoretical model is developed that explains these observations and furthermore predicts a novel focusing mechanism that can explain the increased concentration enhancement achieved. Specifically, when the electric double layer is sufficient in size relative to the channel height, negatively charged analyte ions are repelled from negatively charged walls, and thus prefer to inhabit the centerline of the channels. The resulting induced pressure gradients formed due to the high and low electrical conductivity fluids in the channel force the ions to move at a slower velocity in the low-conductivity region, and a faster velocity in the high-conductivity region, leading to focusing. A simple single-channel model is capable of predicting key experimental observations, while a model that incorporates the details of the fluid inlet and outlet ports allows for more detailed comparisons between model and experiment.

1.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
(
2005
).
2.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature (London)
442
,
368
(
2006
).
3.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
(
2008
).
4.
A.
van den Berg
,
H. G.
Craighead
, and
P.
Yang
, “
From microfluidic applications to nanofluidic phenomena
,”
Chem. Soc. Rev.
39
,
899
(
2010
).
5.
M.
Napoli
,
J. C. T.
Eijkel
, and
S.
Pennathur
, “
Nanofluidic technology for biomolecule applications: A critical review
,”
Lab Chip
10
,
957
(
2010
).
6.
S.
Pennathur
and
J. G.
Santiago
, “
Electrokinetic transport in nanochannels 1: Theory
,”
Anal. Chem.
77
,
6772
(
2005
).
7.
S.
Pennathur
and
J. G.
Santiago
, “
Electrokinetic transport in nanochannels 2: Experiments
,”
Anal. Chem.
77
,
6782
(
2005
).
8.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
Wiley
,
New York
,
1994
).
9.
S.
Pennathur
,
F.
Baldessari
,
J. G.
Santiago
,
M. G.
Kattah
,
J. B.
Steinman
, and
P. J.
Utz
, “
Free-solution oligonucleotide separation in nanoscale channels
,”
Anal. Chem.
79
,
8316
(
2007
).
10.
J. D.
Cross
,
E. A.
Strychalski
, and
H. G.
Craighead
, “
Size-dependent DNA mobility in nanochannels
,”
J. Appl. Phys.
102
,
024701
(
2007
).
11.
J.
Han
and
H. G.
Craighead
, “
Separation of long DNA molecules in a microfabricated entropic trap array
,”
Science
288
,
1026
(
2000
).
12.
E. A.
Strychalski
,
H. W.
Lau
, and
L. A.
Archer
, “
Nonequilibrium separation of short DNA using nanoslit arrays
,”
J. Appl. Phys.
106
,
024915
(
2009
).
13.
W.
Reisner
,
N. B.
Larsen
,
H.
Flyvbjerg
,
J. O.
Tegenfeldt
, and
A.
Kristensen
, “
Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
79
(
2009
).
14.
S. M.
Stavis
,
E. A.
Strychalski
, and
M.
Gaitan
, “
Nanofluidic structures with complex three-dimensional surfaces
,”
Nanotechnology
20
,
165302
(
2009
).
15.
F. E. P.
Mikkers
,
F. M.
Everaerts
, and
Th. P. E. M.
Verheggen
, “
High performance zone electrophoresis
,”
J. Chromatogr. A
169
,
11
(
1979
).
16.
R. L.
Chien
and
D. S.
Burgi
, “
Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis
,”
Anal. Chem.
64
,
1046
(
1992
).
17.
R. L.
Chien
and
D. S.
Burgi
, “
On-column sample concentration using field amplification in CZE
,”
Anal. Chem.
64
,
489A
(
1992
).
18.
R.
Bharadwaj
and
J. G.
Santiago
, “
Dynamics of field-amplified sample stacking
,”
J. Fluid Mech.
543
,
57
(
2005
).
19.
C. H.
Lin
and
T.
Kaneta
, “
On-line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules
,”
Electrophoresis
25
,
4058
(
2004
).
20.
Y.
Yang
,
R. I.
Boysen
, and
M. T. W.
Hearn
, “
Optimization of field-amplified sample injection for analysis of peptides by capillary electrophoresis-mass spectrometry
,”
Anal. Chem.
78
,
4752
(
2006
).
21.
L.
Zhang
and
X. -F.
Yin
, “
Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique
,”
J. Chromatogr. A
1137
,
243
(
2006
).
22.
J. L.
Beckers
and
P.
Bocek
, “
Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations
,”
Electrophoresis
21
,
2747
(
2000
).
23.
R. L.
Chien
, “
Sample stacking revisited: A personal perspective
,”
Electrophoresis
24
,
486
(
2003
).
24.
H.
Yang
and
R. L.
Chien
, “
Sample stacking in laboratory-on-a-chip devices
,”
J. Chromatogr. A
924
,
155
(
2001
).
25.
C. L.
Ren
and
D.
Li
, “
Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients
,”
J. Colloid Interface Sci.
294
,
482
(
2006
).
26.
S.
Song
and
A. K.
Singh
, “
On-chip sample preconcentration for integrated microfluidic analysis
,”
Anal. Bioanal. Chem.
384
,
41
(
2006
).
27.
R.
Bharadwaj
,
J. G.
Santiago
, and
B.
Mohammadi
, “
Design and optimization of on-chip capillary electrophoresis
,”
Electrophoresis
23
,
2729
(
2002
).
28.
S. C.
Jacobson
and
J. M.
Ramsey
, “
Microchip electrophoresis with sample stacking
,”
Electrophoresis
16
,
481
(
1995
).
29.
B.
Jung
,
R.
Bharadwaj
, and
J. G.
Santiago
, “
Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis
,”
Electrophoresis
24
,
3476
(
2003
).
30.
H.
Lin
,
B. D.
Storey
,
M. H.
Oddy
,
C. H.
Chen
, and
J. G.
Santiago
, “
Instability of electrokinetic microchannel flows with conductivity gradients
,”
Phys. Fluids
16
,
1922
(
2004
).
31.
C. -H.
Chen
,
H.
Lin
,
S. K.
Lele
, and
J. G.
Santiago
, “
Convective and absolute electrokinetic instability with conductivity gradients
,”
J. Fluid Mech.
524
,
263
(
2005
).
32.
H.
Lin
,
B. D.
Storey
, and
J. G.
Santiago
, “
A depth-averaged model for electrokinetic flow in microchannels
,”
J. Fluid Mech.
608
,
43
(
2008
).
33.
J. J.
Santos
and
B. D.
Storey
, “
Instability of electroosmotic channel flow with streamwise conductivity gradients
,”
Phys. Rev. E
78
,
046316
(
2008
).
34.
C. F.
Ivory
, “
A brief review of alternative electrofocusing techniques
,”
Sep. Sci. Technol.
35
,
1777
(
2000
).
35.
P. G.
Righetti
and
A.
Bossi
, “
Isoelectric focusing of proteins and peptides in gel slabs and in capillaries
,”
Anal. Chim. Acta
372
,
1
(
1998
).
36.
A. E.
Herr
,
J. I.
Molho
,
K. A.
Drouvalakis
,
J. C.
Mikkelsen
,
P. J.
Utz
,
J. G.
Santiago
, and
T. W.
Kenny
, “
On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations
,”
Anal. Chem.
75
,
1180
(
2003
).
37.
D.
Ross
and
L. E.
Locascio
, “
Microfluidic temperature gradient focusing
,”
Anal. Chem.
74
,
2556
(
2002
).
38.
A.
Mani
,
T. A.
Zangle
, and
J. G.
Santiago
, “
On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part I. Analytical model and characteristic analysis
,”
Langmuir
25
,
3898
(
2009
).
39.
T. A.
Zangle
,
A.
Mani
, and
J. G.
Santiago
, “
On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II. Numerical and experimental study
,”
Langmuir
25
,
3909
(
2009
).
40.
Y. -C.
Wang
,
A.
Stevens
, and
J.
Han
, “
Million-fold preconcentration of proteins and peptides by nanofluidic filter
,”
Anal. Chem.
77
,
4293
(
2005
).
41.
C. T.
Culbertson
,
S. C.
Jacobson
, and
J. M.
Ramsey
, “
Diffusion coefficient measurements in microfluidic devices
,”
Talanta
56
,
365
(
2002
).
42.
A.
Sze
, “
Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow
,”
J. Colloid Interface Sci.
261
,
402
(
2003
).
43.
T.
Driehorst
,
P.
O'Neill
,
D.
Fygenson
, and
S.
Pennathur
, “
Characterization of Agn: DNA nanoclusters by capillary electrophoresis in microfluidic channels
,”
Proceedings of the Thirteenth International Conference on Miniaturized Systems on Miniaturized Chemical and BioChemical Analysis Systems (
μTAS 2009), Jeju, Korea, 1–5 November
2009
(
Chemical and Biological Microsystems Society
,
San Diego, California
,
2009
).
44.
M.
Wang
and
A.
Revil
, “
Electrochemical charge of silica surfaces at high ionic strength in narrow channels
,”
J. Colloid Interface Sci.
343
,
381
(
2010
).
45.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
, “
Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
,”
Adv. Colloid Interface Sci.
152
,
48
(
2009
).
46.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1962
).
47.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
London
,
1985
).
48.
F.
Baldessari
and
J. G.
Santiago
, “
Electrokinetics in nanochannels. Part I. Electric double layer overlap and channel-to-well equilibrium
,”
J. Colloid Interface Sci.
331
,
549
(
2009
).
49.
D.
Burgreen
and
F. R.
Nakache
, “
Electrokinetic flow in ultrafine capillary slits
,”
J. Phys. Chem.
68
,
1084
(
1964
).
50.
C. L.
Rice
and
R.
Whitehead
, “
Electrokinetic flow in a narrow cylindrical capillary
,”
J. Phys. Chem.
69
,
4017
(
1965
).
51.
R.
Aris
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
235
,
67
(
1956
).
52.
A.
Ajdari
,
N.
Bontoux
, and
H. A.
Stone
, “
Hydrodynamic dispersion in shallow microchannels: The effect of cross-sectional shape
,”
Anal. Chem.
78
,
387
(
2006
).
You do not currently have access to this content.