We report a concentration instability at zero Reynolds number created by hydrodynamically interacting bubbles with surfactant. This instability is driven by Marangoni stresses that force bubbles to migrate in directions perpendicular to gravity. We characterize the lateral motion of a single buoyant bubble when it is subject to a weak, low wavenumber disturbance velocity. We use this result to determine which mean flow wavevectors amplify concentration fluctuations in a dilute suspension. The suspension is linearly unstable at small horizontal wavenumbers by a mechanism similar to the concentration instabilities demonstrated in suspensions of sedimenting nonspherical or deformable particles.

1.
D. L.
Koch
and
E. S. G.
Shaqfeh
, “
The instability of a dispersion of sedimenting spheroids
,”
J. Fluid Mech.
209
,
521
(
1989
).
2.
D.
Saintillan
,
E. S. G.
Shaqfeh
, and
E.
Darve
, “
The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation
,”
J. Fluid Mech.
553
,
347
(
2006
).
3.
B.
Hoffman
and
E. S. G.
Shaqfeh
, “
Brownian demixing and wall effects in sedimenting suspensions of orientable particles
,”
Phys. Rev. E
78
,
055301
(R) (
2008
).
4.
B.
Herzhaft
and
É.
Guazzelli
, “
Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres
,”
J. Fluid Mech.
384
,
133
(
1999
).
5.
B.
Metzger
,
É.
Guazzelli
, and
J. E.
Butler
, “
Large-scale streamers in the sedimentation of a dilute fiber suspension
,”
Phys. Rev. Lett.
95
,
164506
(
2005
).
6.
J. A.
Hanna
and
P. M.
Vlahovska
, “
Surfactant-induced migration of a spherical drop in Stokes flow
,”
Phys. Fluids
22
,
013102
(
2010
).
7.
S.
Takagi
,
T.
Ogasawara
, and
Y.
Matsumoto
, “
The effects of surfactant on the multiscale structure of bubbly flows
,”
Philos. Trans. R. Soc. London, Ser. A
366
,
2117
(
2008
).
8.
M.
Fukuta
,
S.
Takagi
, and
Y.
Matsumoto
, “
Numerical study on the shear-induced lift force acting on a spherical bubble in aqueous surfactant solutions
,”
Phys. Fluids
20
,
040704
(
2008
).
9.
V.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1962
).
10.
H. A.
Stone
, “
A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface
,”
Phys. Fluids A
2
,
111
(
1990
).
11.
J.
Newman
, “
Retardation of falling drops
,”
Chem. Eng. Sci.
22
,
83
(
1967
).
12.
R.
Davis
and
A.
Acrivos
, “
The influence of surfactants on the creeping motion of bubbles
,”
Chem. Eng. Sci.
21
,
681
(
1966
).
13.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
New York
,
2007
).
14.
H. A.
Stone
and
L. G.
Leal
, “
The effects of surfactants on drop deformation and breakup
,”
J. Fluid Mech.
220
,
161
(
1990
).
15.
D. L.
Koch
, “
Hydrodynamic diffusion in a suspension of sedimenting point particles with periodic boundary conditions
,”
Phys. Fluids
6
,
2894
(
1994
).
16.
J. M.
Ham
and
G. M.
Homsy
, “
Hindered Settling and hydrodynamic dispersion in quiescent sedimenting suspensions
,”
Int. J. Multiphase Flow
14
,
533
(
1988
).
You do not currently have access to this content.