It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a “fully developed” flow regime can be established. In this asymptotic regime, changes in the streamwise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has not been studied systematically before. A suite of large eddy simulations (LES), in which wind turbines are modeled using the classical “drag disk” concept, is performed for various wind-turbine arrangements, turbine loading factors, and surface roughness values. The results are used to quantify the vertical transport of momentum and kinetic energy across the boundary layer. It is shown that the vertical fluxes of kinetic energy are of the same order of magnitude as the power extracted by the forces modeling the wind turbines. In the fully developed WTABL, the kinetic energy extracted by the wind turbines is transported into the wind-turbine region by vertical fluxes associated with turbulence. The results are also used to develop improved models for effective roughness length scales experienced by the ABL. The effective roughness scale is often used to model wind-turbine arrays in simulations of atmospheric dynamics at larger (regional and global) scales. The results from the LES are compared to several existing models for effective roughness lengths. Based on the observed trends, a modified model is proposed, showing improvement in the predicted effective roughness length.

1.
H.
Snel
, “
Review of the present status of rotor aerodynamics
,”
Wind Energy
1
,
46
(
1998
).
2.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley
,
New York
,
2001
).
3.
A.
Crespo
and
J.
Hernández
, “
Turbulence characteristics in wind-turbine wakes
,”
J. Wind Eng. Ind. Aerodyn.
61
,
71
(
1996
).
4.
J.
Whale
,
C. G.
Anderson
,
R.
Bareiss
, and
S.
Wagner
, “
An experimental and numerical study of the vortex strcture in the wake of a wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
84
,
1
(
2000
).
5.
L. A.
Ivanova
and
E. D.
Nadyozhina
, “
Wind flow deformation inside the wind farm
,”
J. Wind Eng. Ind. Aerodyn.
74–76
,
389
(
1998
).
6.
P. R.
Ebert
and
D. H.
Wood
, “
The near wake of a model horizontal-axis wind turbine—I. Experimental arrangements and initial results
,”
Renewable Energy
12
,
225
(
1997
).
7.
P. R.
Ebert
and
D. H.
Wood
, “
The near wake of a model horizontal-axis wind turbine—II. General features of the three-dimensional flow field
,”
Renewable Energy
18
,
513
(
1999
).
8.
M.
Magnusson
and
A. -S.
Smedman
, “
Air flow behind wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
80
,
169
(
1999
).
9.
L. J.
Vermeer
,
J. N.
Sorensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
(
2003
).
10.
J. N.
Sorensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
(
2002
).
11.
D.
Medici
and
P. H.
Alfredsson
, “
Measurement on a wind turbine wake: 3d effects and bluff body vortex shedding
,”
Wind Energy
9
,
219
(
2006
).
12.
L.
Chamorro
and
F.
Porte-Agel
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
129
(
2009
).
13.
U.
Hogstrom
,
D. N.
Asimakopoulos
,
H.
Kambezidis
,
C. G.
Helmis
, and
A.
Smedman
, “
A field study of the wake behind a 2 MW wind turbine
,”
Atmos. Environ.
22
,
803
(
1988
).
14.
J.
Kline
, “
Turbulence characteristics at Howden Wind Park I
,”
AWEA Conference “Windpower
,” Honolulu, HI,
1988
.
15.
J.
Van Leuven
and
D.
Stevens
, “
The wind farm of Zeebrugge: Experimental set-up
,”
J. Wind Eng. Ind. Aerodyn.
27
,
139
(
1988
).
16.
S. G.
Voutsinas
,
K. G.
Rados
, and
A.
Zervos
, “
On the analysis of wake effects in wind parks
,”
J. Wind Eng. Ind. Aerodyn.
14
,
204
(
1990
).
17.
D.
Smith
, “
Multiple wake measurements and analysis
,” in
Proceedings of the 12th BWEA Wind Energy Conference
, Norwich, UK, edited by
T. D.
Davies
,
J. A.
Halliday
, and
J. P.
Palutikov
(
British Wind Energy Association
,
London
,
1990
), pp.
53
56
.
18.
U.
Hassan
,
A. G.
Glendinning
, and
C. A.
Morgan
, “
A wind tunnel investigation of the wake structure and machine loads within small wind turbine farms
,” in
Proceedings of the 12th BWEA Wind Energy Conference
, Norwich, UK, edited by
T. D.
Davies
,
J. A.
Halliday
, and
J. P.
Palutikov
(
British Wind Energy Association
,
London
,
1990
), pp.
47
52
.
19.
S.
Frandsen
, “
On the wind speed reduction in the center of large clusters of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
39
,
251
(
1992
).
20.
P. B. S.
Lissaman
, “
Energy effectiveness of arbitrary arrays of wind turbines
,”
Proceedings of the 17th AIAA Aerospace Sciences Meeting
, New Orleans, LA, January,
1979
, Paper 79-0114.
21.
D.
Keith
,
J.
DeCarolis
,
D.
Denkenberger
,
D.
Lenschow
,
S.
Malyshev
,
S.
Pacala
, and
P. J.
Rasch
, “
The influence of large-scale wind power on global climate
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
16115
(
2004
).
22.
S.
Baidya-Roy
,
S. W.
Pacala
, and
R. L.
Walko
, “
Can large scale wind farms affect local meteorology?
,”
J. Geophys. Res.
109
,
D19101
, doi:10.1029/2004JD004763 (
2004
).
23.
D.
Barrie
and
D.
Kirk-Davidoff
, “
Weather response to management of large wind turbine array
,”
Atmos. Chem. Phys. Discuss.
9
,
2917
(
2009
).
24.
J.
Jimenez
and
R. D.
Moser
, “
What are we learning from simulating wall turbulence?
,”
Philos. Trans. R. Soc. London
365
,
715
(
2007
).
25.
K. R.
Sreenivasan
, “
The turbulent boundary layer
,”
Frontiers in Experimental Fluid Mechanics
(
Springer-Verlag
,
Berlin
,
1989
), pp.
159
209
.
26.
M. R.
Raupach
,
R. A.
Antonia
, and
S.
Rajagopalan
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1
(
1991
).
27.
J
Finnigan
, “
Turbulence in plant canopies
,”
Annu. Rev. Fluid Mech.
32
,
519
(
2000
).
28.
J.
Kutzbach
, “
Investigations of the modification of wind profiles by artificially controlled surface roughness
,”
Studies of the Three Dimensional Structure of the Planetary Boundary Layer
(
Annual Rept. Department of Meteorology, University of Wisconsin
,
Madison
,
1961
), pp.
71
113
.
29.
H.
Lettau
, “
Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description
,”
J. Appl. Meteor.
8
,
828
(
1969
).
30.
R. J.
Templin
, “
An estimation of the interaction of windmills in widespread arrays
,” Laboratory Report No. LTR-LA-171 (National Aeronautical Establishment, Otawa,
1974
).
31.
B. J.
Newman
, “
The spacing of wind turbines in large arrays
,”
Energy Convers.
16
,
169
(
1977
).
32.
E. A.
Bossanyi
,
C.
Maclean
,
G. E.
Whittle
,
P. D.
Dunn
,
N. H.
Lipman
, and
P. J.
Musgrove
, “
The efficiency of wind turbine clusters
,”
Proceedings of the Third International Symposium on Wind Energy Systems (BHRA)
,
1980
, pp.
401
416
.
33.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Hojstrup
, and
M.
Thogersen
, “
Analytical modelling of wind speed decit in large offshore wind farms
,”
Wind Energy
9
,
39
(
2006
).
34.
C. -H.
Moeng
, “
A large-eddy simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
6
,
2311
(
1984
).
35.
J. D.
Albertson
and
M. B.
Parlange
, “
Surface length-scales and shear stress: Implications for land-atmosphere interaction over complex terrain
,”
Water Resour. Res.
35
,
2121
, doi:10.1029/1999WR900094 (
1999
).
36.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
37.
E.
Bou-Zeid
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
38.
R. W. C. P.
Verstappen
and
A. E. P.
Veldman
, “
Symmetry-preserving discretization of turbulent flow
,”
J. Comput. Phys
.
187
,
343
(
2003
).
39.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
(
1963
).
40.
P. J.
Mason
and
D. J.
Thomson
, “
Stochastic backscatter in large-eddy simulations of boundary layers
,”
J. Fluid Mech.
242
,
51
(
1992
).
41.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1988
).
42.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
(
2005
), special issue on program generation, optimization, and platform adaptation.
43.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Advances in large-eddy simulation of a wind turbine wake
,”
J. Phys.: Conf. Ser.
75
,
012041
(
2007
).
44.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Large-eddy simulation of spectral coherence in a wind turbine wake
,”
Environ. Res.
3
,
015004
(
2008
).
45.
J.
Meyers
and
C.
Meneveau
, “
Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer
,” AIAA Paper No. 2010-827, 2010.
46.
R. B.
Cal
,
J.
Lebrón
,
H. S.
Kang
,
L.
Castillo
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
(to be published).
47.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge, MA
,
1972
).
You do not currently have access to this content.