We report an experimental investigation on the influence of an external magnetic field on forced three-dimensional turbulence of liquid gallium in a closed vessel. We observe an exponential damping of the turbulent velocity fluctuations as a function of the interaction parameter N (ratio of Lorentz force over inertial terms of the Navier–Stokes equation). The flow structures develop some anisotropy but do not become bidimensional. From a dynamical viewpoint, the damping first occurs homogeneously over the whole spectrum of frequencies. For larger values of N, a very strong additional damping occurs at the highest frequencies. However, the injected mechanical power remains independent of the applied magnetic field. The simultaneous measurement of induced magnetic field and electrical potential differences shows a very weak correlation between magnetic field and velocity fluctuations. The observed reduction in the fluctuations is in agreement with a previously proposed mechanism for the saturation of turbulent dynamos and with the order of magnitude of the Von Kármán sodium dynamo magnetic field.

1.
S.
Eckert
,
G.
Gerbeth
,
W.
Witke
, and
H.
Langenbrunner
, “
MHD turbulence measurements in a sodium channel flow exposed to a transverse magnetic field
,”
Int. J. Heat Fluid Flow
22
,
358
(
2001
).
2.
A.
Alemany
,
R.
Moreau
,
P. L.
Sulem
, and
U.
Frisch
, “
Influence of an external magnetic field on homogeneous MHD turbulence
,”
J. Mec.
18
,
2
(
1979
).
3.
B.
Knaepen
and
R.
Moreau
, “
Magnetohydrodynamic turbulence at low magnetic Reynolds number
,”
Annu. Rev. Fluid Mech.
40
,
25
(
2008
).
4.
D. R.
Sisan
,
W. L.
Shew
, and
D. P.
Lathrop
, “
Lorentz force effects in magneto-turbulence
,”
Phys. Earth Planet. Inter.
135
,
137
(
2003
).
5.
O.
Zikanov
and
A.
Thess
, “
Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number
,”
J. Fluid Mech.
358
,
299
(
1998
).
6.
T.
Boeck
,
D.
Krasnov
,
A.
Thess
, and
O.
Zikanov
, “
Large-scale intermittency of liquid-metal channel flow in a magnetic field
,”
Phys. Rev. Lett.
101
,
244501
(
2008
).
7.
A.
Vorobev
,
O.
Zikanov
,
P. A.
Davidson
, and
B.
Knaepen
, “
Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number
,”
Phys. Fluids
17
,
125105
(
2005
).
8.
P.
Burattini
,
M.
Kinet
,
D.
Carati
, and
B.
Knaepen
, “
Anisotropy of velocity spectra in quasistatic magnetohydrodynamic turbulence
,”
Phys. Fluids
20
,
065110
(
2008
).
9.
L.
Marié
and
F.
Daviaud
, “
Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow
,”
Phys. Fluids
16
,
457
(
2004
).
10.
R.
Monchaux
,
M.
Berhanu
,
M.
Bourgoin
,
M.
Moulin
,
P.
Odier
,
J. -F.
Pinton
,
R.
Volk
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
C.
Gasquet
,
L.
Marié
, and
F.
Ravelet
, “
Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium
,”
Phys. Rev. Lett.
98
,
044502
(
2007
).
11.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
Cambridge
,
1978
).
12.
A.
Kharicha
,
A.
Alemany
, and
D.
Bornas
, “
Influence of the magnetic field and the conductance ratio on the mass transfer rotating lid driven flow
,”
Int. J. Heat Mass Transfer
47
,
1997
(
2004
).
13.
R.
Ricou
and
C.
Vives
, “
Local velocity and mass transfer measurements in molten metals using an incorporated magnet probe
,”
Int. J. Heat Mass Transfer
25
,
1579
(
1982
).
14.
A.
Tsinober
,
E.
Kit
, and
M.
Teitel
, “
On the relevance of the potential-difference method for turbulence measurements
,”
J. Fluid Mech.
175
,
447
(
1987
).
15.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge
,
1972
).
16.
N. I.
Bolonov
,
A. M.
Kharenko
, and
A. E.
Éidel’man
, “
Correction of spectrum of turbulence in the measurement by a conduction anemometer
,”
Inzh.-Fiz. Zh.
31
,
243
(
1976
).
17.
M.
Berhanu
,
B.
Gallet
,
N.
Mordant
, and
S.
Fauve
, “
Reduction of velocity fluctuations in a turbulent flow of liquid gallium by an external magnetic field
,”
Phys. Rev. E
78
,
015302
(
2008
).
18.
P.
Odier
,
J. -F.
Pinton
, and
S.
Fauve
, “
Advection of a magnetic field by a turbulent swirling flow
,”
Phys. Rev. E
58
,
7397
(
1998
).
19.
J.
Sommeria
and
R.
Moreau
, “
Why, how, and when, MHD turbulence becomes two-dimensional
,”
J. Fluid Mech.
118
,
507
(
1982
).
20.
F.
Pétrélis
,
N.
Mordant
, and
S.
Fauve
, “
On the magnetic fields generated by experimental dynamos
,”
Geophys. Astrophys. Fluid Dyn.
101
,
289
(
2007
).
21.
R.
Monchaux
,
M.
Berhanu
,
S.
Aumaître
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
F.
Ravelet
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
M.
Bourgoin
,
P.
Odier
,
J. -F.
Pinton
,
N.
Plihon
, and
R.
Volk
, “
The Von Kármán sodium experiment: Turbulent dynamical dynamos
,”
Phys. Fluids
21
,
035108
(
2009
).
You do not currently have access to this content.