In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

1.
P. S.
Virk
, “
Drag reduction fundamentals
,”
AIChE J.
21
,
625
(
1975
).
2.
W. C.
Sanders
,
E. S.
Winkel
,
D. R.
Dowling
,
M.
Perlin
, and
S. L.
Ceccio
, “
Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer
,”
J. Fluid Mech.
552
,
353
(
2006
).
3.
B. R.
Elbing
,
E. S.
Winkel
,
K. A.
Lay
,
S. L.
Ceccio
,
D. R.
Dowling
, and
M.
Perlin
,
“Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction
,”
J. Fluid Mech.
612
,
201
(
2008
).
4.
K.
Fukuda
,
J.
Tokunaga
,
T.
Nobunaga
,
T.
Nakatani
,
T.
Iwasaki
, and
Y.
Kunitake
, “
Frictional drag reduction with air lubricant over a super-water-repellent surface
,”
J. Mar. Sci. Technol.
5
,
123
(
2000
).
5.
S.
Hahn
,
J.
Je
, and
H.
Choi
, “
Direct numerical simulation of turbulent channel flow with permeable walls
,”
J. Fluid Mech.
450
,
259
(
2002
).
6.
D. W.
Bechert
,
M.
Bruse
,
W.
Hage
,
J. G. T.
van der Hoeven
, and
G.
Hoppe
, “
Experiments in drag-reducing surfaces and their optimization with an adjustable geometry
,”
J. Fluid Mech.
338
,
59
(
1997
).
7.
J.
Ou
,
J. B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
(
2004
).
8.
P.
Joseph
,
C.
Cottin-Bizonne
,
J. -M.
Benoit
,
C.
Ybert
,
C.
Journet
,
P.
Tabeling
, and
L.
Bocquet
, “
Slippage of water past superhydrophobic carbon nanotube forests in microchannels
,”
Phys. Rev. Lett.
97
,
156104
(
2006
).
9.
D.
Quere
and
M.
Reyssat
, “
Non-adhesive lotus and other hydrophobic materials
,”
Philos. Trans. Roy. Soc. A
366
,
1539
(
2008
).
10.
L.
Gao
and
T.
McCarthy
, “
A commercially available perfectly hydrophobic material
,”
Langmuir
23
,
9125
(
2007
).
11.
J. R.
Philip
, “
Integral properties of flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
960
(
1972
).
12.
J. R.
Philip
, “
Flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
353
(
1972
).
13.
E.
Lauga
and
H. A.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
(
2003
).
14.
J.
Ou
and
J. P.
Rothstein
, “
Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces
,”
Phys. Fluids
17
,
103606
(
2005
).
15.
R.
Truesdell
,
A.
Mammoli
,
P.
Vorobieff
,
P.
van Swol
, and
C. J.
Brinker
, “
Drag reduction on a patterned superhydrophobic surface
,”
Phys. Rev. Lett.
97
,
044504
(
2006
).
16.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, in
Handbook of Experimental Fluid Dynamics
, edited by
J.
Foss
,
C.
Tropea
, and
A. L.
Yarin
(
Springer
,
New York
,
2007
).
17.
C.
Ybert
,
C.
Barentin
,
C.
Cottin-Bizonne
,
P.
Joseph
, and
L.
Bocquet
, “
Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries
,”
Phys. Fluids
19
,
123601
(
2007
).
18.
R. S.
Voronov
,
D. V.
Papavassiliou
, and
L. L.
Lee
, “
Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle
,”
Ind. Eng. Chem. Res.
47
,
2455
(
2008
).
19.
R. S.
Voronov
,
D. V.
Papavassiliou
, and
L. L.
Lee
, “
Boundary slip and wetting properties of interfaces: Correlation of the contact angle with the slip length
,”
J. Chem. Phys.
124
,
204701
(
2006
).
20.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
21.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on skin-friction drag
,”
Phys. Fluids
16
,
L55
(
2004
).
22.
K.
Fukagata
,
N.
Kasagi
, and
P.
Koumoutsakos
, “
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
,”
Phys. Fluids
18
,
051703
(
2006
).
23.
M. B.
Martell
,
J. B.
Perot
, and
J. P.
Rothstein
, “
Direct numerical simulation of turbulent flow over ultrahydrophobic surfaces
,”
J. Fluid Mech.
620
,
31
(
2009
).
24.
M.
Martell
, in
Department of Mechanical and Industrial Engineering
(
University of Massachusetts
,
Amherst
,
2008
), p.
127
.
25.
S.
Gogte
,
P.
Vorobieff
,
R.
Truesdell
,
A.
Mammoli
,
F.
van Swol
,
P.
Shah
, and
C. J.
Brinker
, “
Effective slip on textured superhydrophobic surfaces
,”
Phys. Fluids
17
,
051701
(
2005
).
26.
C.
Henoch
,
T. N.
Krupenkin
,
P.
Kolodner
,
J. A.
Taylor
,
M. S.
Hodes
,
A. M.
Lyons
,
C.
Peguero
, and
K.
Breuer
, “
Turbulent drag reduction using superhydrophobic surfaces
,”
Collection of Technical Papers: Third AIAA Flow Control Conference
,
2006
, Vol.
2
, p.
840
.
27.
K.
Watanabe
,
Y.
Udagawa
, and
H.
Udagawa
, “
Drag reduction of Newtonian fluid in a circular pipe with highly water-repellent wall
,”
J. Fluid Mech.
381
,
225
(
1999
).
28.
A. K.
Balasubramanian
,
A. C.
Miller
, and
O. K.
Rediniotis
, “
Microstructured hydrophobic skin for hydrodynamic drag reduction
,”
AIAA J.
42
,
411
(
2004
).
29.
C.
Henoch
,
T. N.
Krupenkin
,
P.
Kolodner
,
J. A.
Taylor
,
M. S.
Hodes
,
A. M.
Lyons
,
C.
Peguero
, and
K.
Breuer
,
Turbulent Drag Reduction Using Superhydrophobic Surfaces
(
AIAA
,
Reston, VA
,
2006
).
30.
J. C.
Reed
, “
Using grooved surfaces to improve the efficiency of air injection drag reduction methods in hydrodynamic flows
,”
J. Ship Res.
38
,
133
(
1994
).
31.
D. B.
Goldstein
and
T. -C.
Tuan
, “
Secondary flow induced by riblets
,”
J. Fluid Mech.
363
,
115
(
1998
).
32.
F. M.
White
,
Viscous Fluid Flow
(
McGraw-Hill
,
Boston, MA
,
2006
).
33.
D. B.
Spalding
, “
A single formula for the “Law of the Wall”
,”
Trans. ASME, J. Appl. Mech.
28
,
455
(
1961
).
34.
L. F.
Moody
, “
Friction factors for pipe flow
,”
ASME-Transactions
66
,
671
(
1944
).
You do not currently have access to this content.