Large eddy simulation of flow in a stirred tank has been carried out for three different Reynolds numbers of 4000, 16 000, and 64 000 using a spectral multidomain method in order to observe the effect of Reynolds numbers on the flow fields. As the Reynolds number increases, each large ring vortex at the upper and lower parts of the tank has been broken up into smaller vortices. With increasing Reynolds number, the ring vortex in the mean field becomes a slightly more oblate and increases in height until it reaches the lid of the tank. The isosurface of swirling strength has been adopted to identify the instantaneous and mean tip-vortex structures. Due to the time-dependent jitter in the position of tip vortices, the time-averaged vortex structure appears to decay much faster. This decay is more rapid with increasing Reynolds number. The increment of the ratio of time and volume-averaged resolved scale dissipation and subgrid scaled dissipation was governed by the linear function of Reynolds number.

1.
M. A.
Rao
and
R. S.
Brodkey
, “
Continuous flow stirred tank turbulence parameters in the impeller stream
,”
Chem. Eng. Sci.
27
,
137
(
1972
).
2.
V. V.
Ranade
and
J. B.
Joshi
, “
Flow generated by a disc turbine
,”
Trans. IChemE
68
,
34
(
1990
).
3.
M.
Schafer
,
M.
Hofken
, and
F.
Durst
, “
Detailed LDV measurements for visualization of the flow field within a stirred tank reactor equipped with a Rushton turbine
,”
Trans. IChemE
75
,
729
(
1997
).
4.
K. C.
Lee
and
M.
Yianneskis
, “
Turbulence properties of the impeller stream of a Rushton turbine
,”
AIChE J.
44
,
13
(
1998
).
5.
K. V.
Sharp
,
K. S.
Kim
, and
R. J.
Adrian
, “
A study of vorticity and dissipation around a Rushton turbine using particle image velocimetry
,”
Proceedings of the Ninth International Symposium on Applications Lasers to Fluid Mechanics
, Lisbon, 13–16 July
1998
, pp.
14
1
1
10
.
6.
N. G.
Deen
and
B. H.
Hjertager
, “
Particle image velocimetry measurements in an aerated stirred tank
,”
Chem. Eng. Commun.
189
,
1208
(
2002
).
7.
V. V.
Ranade
,
M.
Perrard
,
N.
Le Sauze
,
C.
Xuereb
, and
J.
Bertrand
, “
Trailing vortices of Rushton turbine: PIV measurements and CFD simulations with snapshot approach
,”
Trans. IChemE
79
,
3
(
2001
).
8.
B. J.
Hutchings
,
R. J.
Weetman
, and
B. R.
Patel
, “
Computation of flow fields in mixing tanks with experimental verification
,”
ASME Meeting
, San Francisco,
1989
.
9.
V. V.
Ranade
,
J. B.
Joshi
, and
A. G.
Marathe
, “
Flow generated by pitched blade turbines II: Simulation using k-e model
,”
Chem. Eng. Commun.
81
,
225
(
1989
).
10.
S. M.
Kresta
and
P. E.
Wood
, “
Prediction of the three-dimensional turbulent flow in stirred tanks
,”
AIChE J.
37
,
448
(
1991
).
11.
A.
Bakker
and
H. E. A.
van den Akker
, “
Single-phase flow in stirred reactors
,”
Trans. IChemE.
74
,
485
(
1994
).
12.
D. F.
Hill
,
K. V.
Sharp
, and
R. J.
Adrian
, “
Stereoscopic particle image velocimetry measurements of the flow around a rushton turbine
,”
Exp. Fluids
29
,
478
(
2000
).
13.
L.
Dong
,
S. T.
Johansen
, and
T. A.
Engh
, “
Flow induced by an impeller in an unbaffled tank––I. Experimental
,”
Chem. Eng. Sci.
49
,
549
(
1994
).
14.
L.
Dong
,
S. T.
Johansen
, and
T. A.
Engh
, “
Flow induced by an impeller in an unbaffled tank––II. Numerical modeling
,”
Chem. Eng. Sci.
49
,
3511
(
1994
).
15.
R.
Verzicco
,
G.
Iaccarino
,
M.
Fatica
, and
P.
Orlandi
, “
Flow in an impeller stirred tank using an immersed boundary technique
,” CTR Annual Research briefs, pp.2 51–261 (2000).
16.
R. M.
Jones
,
A. D.
Harvey
, and
S.
Acharya
, “
Two-equation turbulence modeling for impeller stirred tanks
,”
ASME J. Fluids Eng.
123
,
640
(
2001
).
17.
J. M. G.
Eggels
, “
Direct and large eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme
,”
Int. J. Heat Fluid Flow
17
,
307
(
1996
).
18.
J.
Revstedt
,
L.
Fuchs
, and
C.
Tragardh
, “
Large eddy simulation of the turbulent flow in a stirred reactor
,”
Chem. Eng. Sci.
53
,
4041
(
1998
).
19.
K. A.
Pericleous
and
M. K.
Patel
, “
The source-sink approach in the modeling of stirred reactors
,”
PCH, PhysicoChem. Hydrodyn.
9
,
279
(
1987
).
20.
J.
Derksen
and
H. E. A.
Van den Akker
, “
Large eddy simulation on the flow driven by a Rushton turbine
,”
AIChE J.
45
,
209
(
1999
).
21.
H. S.
Yoon
,
K. V.
Sharp
,
D. F.
Hill
,
R. J.
Adrian
,
S.
Balachandar
,
M. Y.
Ha
, and
K.
Kar
, “
Integrated experimental and computational approach to simulation of flow in a stirred tank
,”
Chem. Eng. Sci.
56
,
6635
(
2001
).
22.
H. S.
Yoon
,
S.
Balachandar
,
M. Y.
Ha
, and
K.
Kar
, “
Large eddy simulation of flow in a stirred tank
,”
ASME J. Fluids Eng.
125
,
486
(
2003
).
23.
H. S.
Yoon
,
D. F.
Hill
,
S.
Balachandar
,
R. J.
Adrian
, and
M. Y.
Ha
, “
Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I––Mean flow, circular jet and tip vortex scaling
,”
Chem. Eng. Sci.
60
,
3169
(
2005
).
24.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
25.
P. J.
Mason
and
N. S.
Callen
, “
On the magnitude of the subgrid-scale eddy coefficient in large eddy simulations of turbulent channel flow
,”
J. Fluid Mech.
162
,
439
(
1986
).
26.
C.
Canuto
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer
,
New York
,
1988
).
27.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamics Stability
(
Cambridge University Press
,
New York
,
1981
).
28.
C.
Bartels
,
M.
Breuer
,
K.
Wechsler
, and
F.
Durst
, “
Computational fluid dynamics applications on parallel-vector computers: computations of stirred vessel flow
,”
Comput. Fluids
31
,
69
(
2002
).
29.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
(
1999
).
You do not currently have access to this content.