A spherical bead deposited on a smooth tilted dry plane wall rolls down the slope under the uniform acceleration of gravity. We describe an analogous experiment conducted using a plane wall that is coated with a thin layer (of order 50100μm) of a viscous liquid. The steady motion of the sphere under gravity involves a combination of rotation and sliding. We examine the dependence of the experimentally observed steady translational and rotational speeds on the physical parameters in the system. In particular, the interplay between viscous forces and interfacial forces leads to nontrivial exponents for the scaling of the speeds with the characteristics of the sphere and the viscous liquid. The overhang situation, in which the sphere rolls down the underside of an inclined lubricated plane, is also examined. In this case, the steady motion is still observed for a certain range of angles and bead sizes; that is, the sphere does not always detach from the surface. The adhesive force arises dynamically from the motion of the sphere and can exceed classical quasistatic capillary forces. Such a force should also play a role in other problems of lubrication mechanics such as humid granular flows.

1.
G.
Galilei
,
Dialogues Concerning Two New Sciences
(
Macmillan
,
New York
,
1914
).
2.
J. R.
Smart
,
S.
Beimfohr
, and
D. T.
Leighton
, “
Measurement of the translational and rotational velocities of a noncolloidal sphere rolling down a smooth inclined plane at low Reynolds-number
,”
Phys. Fluids A
5
,
13
(
1993
).
3.
Y. J.
Liu
,
J.
Nelson
,
J.
Feng
, and
D. D.
Joseph
, “
Anomalous rolling of spheres down an inclined plane
,”
J. Non-Newtonian Fluid Mech.
50
,
305
(
1993
).
4.
O.
Reynolds
, “
On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil
,”
Philos. Trans. R. Soc. London
177
,
157
(
1886
).
5.
D.
Dowson
and
C. M.
Taylor
, “
Cavitation in bearings
,”
Annu. Rev. Fluid Mech.
11
,
35
(
1979
).
6.
Y.
Zhao
,
K. P.
Galvin
, and
R. H.
Davis
, “
Motion of a sphere down a rough plane in a viscous fluid
,”
Int. J. Multiphase Flow
28
,
1787
(
2002
).
7.
M.
Abkarian
,
C.
Lartigue
, and
A.
Viallat
, “
Motion of phospholipidic vesicles along an inclined plane: Sliding and rolling
,”
Phys. Rev. E
63
,
041906
(
2001
).
8.
S.
Nowak
,
A.
Samadani
, and
A.
Kudrolli
, “
Maximum angle of stability of a wet granular pile
,”
Nat. Phys.
1
,
50
(
2005
).
9.
M. J.
Matthewson
, “
Adhesion of spheres by thin liquid films
,”
Philos. Mag. A
57
,
207
(
1988
).
10.
O.
Pitois
,
P.
Moucheront
, and
X.
Chateau
, “
Liquid bridge between two moving spheres: An experimental study of viscosity effects
,”
J. Colloid Interface Sci.
231
,
26
(
2000
).
11.
J. R. A.
Pearson
, “
The instability of uniform viscous flow under rollers and spreaders
,”
J. Fluid Mech.
7
,
481
(
1960
).
12.
E.
Pitts
and
J.
Greiller
, “
The flow of thin liquid films between rollers
,”
J. Fluid Mech.
11
,
33
(
1961
).
13.
M.
Rabaud
, “
Interface dynamics in the printer instability
,”
Ann. Phys.
19
,
659
(
1994
).
14.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid
,”
Chem. Eng. Sci.
22
,
637
(
1967
).
15.
K. P.
Galvin
,
Y.
Zhao
, and
R. H.
Davis
, “
Time-averaged hydrodynamic roughness of a noncolloidal sphere in low Reynolds number motion down an inclined plane
,”
Phys. Fluids
13
,
3108
(
2001
).
16.
A. N.
Prokunin
, “
On a paradox in the motion of a rigid particle along a wall in a fluid
,”
Fluid Dyn.
38
,
443
(
2003
).
17.
R.
Gohar
,
Elastohydrodynamics
, 2nd ed. (
Imperial College Press
,
London
,
2001
).
18.
P. L.
Kapitza
,
Collected Papers of P. L. Kapitza
(
Pergamon
,
Oxford
,
1965
), Vol.
II
.
19.
G. P.
Krishnan
and
D. T.
Leighton
, “
Inertial lift on a moving sphere in contact with a plane wall in a shear-flow
,”
Phys. Fluids
7
,
2538
(
1995
).
20.
M. R.
King
and
D. T.
Leighton
, “
Measurement of the inertial lift on a moving sphere in contact with a plane wall in a shear flow
,”
Phys. Fluids
9
,
1248
(
1997
).
21.
J.
Ashmore
,
C.
del Pino
, and
T.
Mullin
, “
Cavitation in a lubrication flow between a moving sphere and a boundary
,”
Phys. Rev. Lett.
94
,
124501
(
2005
).
22.
L.
Mahadevan
and
Y.
Pomeau
, “
Rolling droplets
,”
Phys. Fluids
11
,
2449
(
1999
).
23.
D.
Richard
and
D.
Quéré
, “
Viscous drops rolling on a tilted non-wettable solid
,”
Europhys. Lett.
48
,
286
(
1999
).
24.
T. C.
Halsey
and
A. J.
Levine
, “
How sandcastles fall
,”
Phys. Rev. Lett.
80
,
3141
(
1998
).
25.
J.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
,
London
,
1992
).
26.
M.
Barquins
, “
Adherence, friction and contact geometry of a rigid cylinder rolling on the flat and smooth surface of an elastic body
,”
J. Nat. Rubber Res.
5
,
199
(
1990
).
You do not currently have access to this content.