This paper describes the results of more than 4000 long-term (up to thousands of peak wave periods) numerical simulations of nonlinear gravity surface waves performed for the investigation of properties and estimation of statistics of extreme (“freak”) waves. The method of solution of two-dimensional potential wave equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by the Joint North Sea Wave Observation Project and Pierson–Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in the appearance of very big waves. There are no predictors for the appearance of extreme waves; however, the height of dimensional waves is proportional to the significant wave height. The initial generation of extreme waves can occur simply as a result of linear group effects, but in some cases the largest wave suddenly starts to grow. It is followed sometimes by a strong concentration of wave energy around a peak vertical. It takes place typically for one peak wave period. It happens to an individual wave in physical space, with no energy exchange with surrounding waves taking place. A probability function for steep waves has been constructed. Such type of function can be used for the development of operational forecast of freak waves based on a standard forecast provided by a three-dimensional generation wave prediction model (WAVEWATCH or wave modeling).

1.
C.
Kharif
and
E.
Pelinovsky
, “
Physical mechanisms of the rogue wave phenomenon
,”
Eur. J. Mech. B/Fluids
22
,
603
(
2003
).
2.
K.
Dysthe
,
H.
Krogstad
, and
P.
Muller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid Mech.
40
,
287
(
2008
).
3.
P.
Janssen
, “
Nonlinear four-wave interaction and freak waves
,”
J. Phys. Oceanogr.
33
,
863
(
2003
).
4.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
(
1968
).
5.
Homer
, “
Iliad
,”
The Project Gutenberg Etext of The Iliad
, translated by S. Butler (
Dover
,
Mineola
,
2000
).
6.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wave trains in deep water
,”
J. Fluid Mech.
27
,
417
(
1967
).
7.
D.
Chalikov
, “
Numerical simulation of Benjamin–Feir instability and its consequences
,”
Phys. Fluids
19
,
016602
(
2007
).
8.
K. L.
Henderson
,
D. H.
Peregrine
, and
J. W.
Dold
, “
Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation
,”
Wave Motion
29
,
341
(
1999
).
9.
K. B.
Dysthe
and
K.
Trulsen
, “
Note on breather type solutions of the NLS as a model for freak-waves
,”
Phys. Scr., T
T82
,
48
(
1999
).
10.
A. R.
Osborne
,
M.
Onorato
, and
M.
Serio
, “
The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train
,”
Phys. Lett. A
275
,
386
(
2000
).
11.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
, and
T.
Damiani
, in
Rogue Waves 2000
, edited by
M.
Olagnon
and
G. A.
Athanassoulis
(
Ifremer
,
Brest, France
,
2000
), pp.
181
191
.
12.
A.
Slunyaev
,
C.
Kharif
,
E.
Pelinovsky
, and
T.
Talipova
, “
Nonlinear wave focusing on water of finite depth
,”
Physica D
173
,
77
(
2002
).
13.
D.
Chalikov
and
D.
Sheinin
, “
Modeling of extreme waves based on equations of potential flow with a free surface
,”
J. Comput. Phys.
210
,
247
(
2005
).
14.
A.
Babanin
,
D.
Chalikov
,
I.
Young
, and
I.
Savelyev
, “
Predicting the breaking onset of surface water waves
,”
Geophys. Res. Lett.
34
,
L07605
, DOI:10.1029/2006GL029135 (
2007
).
15.
J. W.
Dold
and
D. H.
Peregrine
, in
Numerical Methods for Fluid Dynamics
, edited by
K. W.
Morton
and
M. J.
Baines
(
Oxford University Press
,
New York
,
1986
), pp.
671
679
.
16.
J. W.
Dold
, “
An efficient surface-integral algorithm applied to unsteady gravity waves
,”
J. Comput. Phys.
103
,
90
(
1992
).
17.
D.
Chalikov
and
D.
Sheinin
, “
Numerical modeling of surface waves based on principal equations of potential wave dynamics
,” NOAA/NCEP/OMB Technical Note,
1996
.
18.
D.
Chalikov
and
D.
Sheinin
, in
Advances in Fluid Mechanics
, edited by
W.
Perrie
(
Computational Mechanics
,
Southampton
,
1998
), Vol.
17
, pp.
207
258
.
19.
W. J. D.
Bateman
,
C.
Swan
, and
P. H.
Taylor
, “
On the efficient numerical simulation of directionally spread surface water waves
,”
J. Comput. Phys.
174
,
277
(
2001
).
20.
D.
Clamond
and
J.
Grue
, “
A fast method for fully nonlinear water wave computations
,”
J. Fluid Mech.
447
,
337
(
2001
).
21.
D.
Fructus
,
D.
Clamond
,
J.
Grue
, and
O.
Kristiansen
, “
An efficient model for three-dimensional surface wave simulations: Part I: Free surface problem
,”
J. Comput. Phys.
205
,
665
(
2005
).
22.
W. T.
Tsai
and
D. K. P.
Yue
, “
Computation of nonlinear free-surface flows
,”
Annu. Rev. Fluid Mech.
28
,
249
(
1996
).
23.
J. -B.
Song
and
M. L.
Banner
, “
On determining the onset and strength of breaking for deep water waves. Part I.: Unforced irrotational wave groups
,”
J. Phys. Oceanogr.
32
,
2541
(
2002
).
24.
G. D.
Crapper
, “
An exact solution for progressive capillary waves of arbitrary amplitude
,”
J. Fluid Mech.
96
,
417
(
1957
).
25.
G. D.
Crapper
,
Introduction to Water Waves
(
Wiley
,
Chichester
,
1984
).
26.
G. G.
Stokes
, “
On the theory of oscillatory waves
,”
Trans. Cambridge Philos. Soc.
8
,
441
(
1847
).
27.
J. C.
Whitney
, “
The numerical solution of unsteady free-surface flows by conformal mapping
,” in
Proceedings of the Second International Conference on Numerical Fluid Dynamics
, edited by
M.
Holt
(
Springer-Verlag
,
Berlin
,
1971
), pp.
458
462
.
28.
L. V.
Ovsyannikov
, “
Dinamika sploshnoi sredy
,”
M.A. Lavrent’ev Institute of Hydrodynamics Sib. Branch USSR Acad. Sci.
15
,
104
(
1973
).
29.
T.
Kano
and
T.
Nishida
, “
Sur le ondes de surface de l’eau avec une justification mathematique des equations des ondes en eau peu profonde
,”
J. Math. Kyoto Univ.
19
,
335
(
1979
).
30.
B.
Fornberg
, “
A numerical method for conformal mapping
,”
SIAM J. Sci. Stat. Comput.
1
,
386
(
1980
).
31.
S.
Tanveer
, “
Singularities in water waves and Rayleigh–Taylor instability
,”
Proc. R. Soc. London, Ser. A
435
,
137
(
1991
).
32.
S.
Tanveer
, “
Singularities in the classical Rayleigh–Taylor flow: Formation and subsequent motion
,”
Proc. R. Soc. London, Ser. A
441
,
501
(
1993
).
33.
D.
Sheinin
and
D.
Chalikov
, “
Hydrodynamical modeling of potential surface waves: Problems of hydrometeorology and environment on the eve of XXI century
,” in
Proceedings of International Theoretical Conference
, St. Petersburg, Russia, 24–25 June
1999
(
Hydrometeoizdat
,
St.-Petersburg
,
2001
), pp.
305
337
.
34.
V. E.
Zakharov
,
A. I.
Dyachenko
, and
A. O.
Prokofiev
, “
New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface
,”
Eur. J. Mech. B/Fluids
21
,
283
(
2002
).
35.
V. E.
Zakharov
,
A. I.
Dyachenko
, and
A. O.
Prokofiev
, “
Freak waves as nonlinear stage of Stokes wave modulation instability
,”
Eur. J. Mech. B/Fluids
25
,
677
(
2006
).
36.
M. S.
Longuet-Higgins
and
M.
Tanaka
, “
On the crest instabilities of steep surface waves
,”
J. Fluid Mech.
336
,
51
(
1997
).
37.
D.
Chalikov
, “
Statistical properties of nonlinear one-dimensional wave fields
,”
Nonlinear Processes Geophys.
12
,
1
(
2005
).
38.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
,
L.
Cavaleri
,
C.
Brandini
, and
C. T.
Stansberg
, “
Observations of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments
,”
Phys. Rev. E
70
,
067302
(
2004
).
39.
M.
Onorato
,
A. R.
Osborn
, and
M.
Serio
, “
Modulational instability and non-Gaussian statistics in experimental random water-wave tank
,”
Phys. Fluids
17
,
078101
(
2005
).
40.
J. W.
McLean
, “
Instabilities of finite-amplitude water waves
,”
J. Fluid Mech.
114
,
315
(
1982
).
41.
M.
Onorato
,
T.
Waseda
,
A.
Toffoli
,
L.
Cavaleri
,
O.
Gramstad
,
P. A. E. M.
Janssen
,
T.
Kinoshita
,
J.
Monbali
u,
N.
Mori
,
A. R.
Osborne
,
M.
Serio
,
C. T.
Stansber
g,
H.
Tamura
, and
K.
Trulsen
, “
Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events
,”
Phys. Rev. Lett.
102
,
114502
(
2009
).
42.
A. V.
Babanin
and
Yu. P.
Soloviev
, “
Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development
,”
J. Phys. Oceanogr.
28
,
563
(
1998
).
43.
A. I.
Dyachenko
and
V. E.
Zakharov
, “
Modulation instability of Stokes wave–freak wave
,”
Pis'ma Zh. Eksp. Teor. Fiz.
81
,
318
(
2005
).
44.
V. E.
Zakharov
and
A. O.
Korotkevich
,
A. N.
Pushkarev
, and
A. I.
Dyachenko
, “
Mesoscopic wave turbulence
,”
JETP Lett.
82
,
487
(
2005
).
You do not currently have access to this content.