We consider the gravity-driven laminar flow of a shallow fluid layer down an uneven incline with the principal objective of investigating the effect of bottom topography and surface tension on the stability of the flow. The equations of motion are approximations to the Navier–Stokes equations which exploit the assumed relative shallowness of the fluid layer. Included in these equations are diffusive terms that are second order relative to the shallowness parameter. These terms, while small in magnitude, represent an important dependence of the flow dynamics on the variation in bottom topography and play a significant role in theoretically capturing important aspects of the flow. Some of the second-order terms include normal shear contributions, while others lead to a nonhydrostatic pressure distribution. The explicit dependence on the cross-stream coordinate is eliminated from the equations of motion by means of a weighted residual approach. The resulting mathematical formulation constitutes an extension of the modified integral-boundary-layer equations proposed by Ruyer-Quil and Manneville [Eur. Phys. J. B15, 357 (2000)] for flows over even surfaces to flows over variable topography. A linear stability analysis of the steady flow is carried out by taking advantage of Floquet–Bloch theory. A numerical scheme is devised for solving the nonlinear governing equations and is used to calculate the evolution of the perturbed equilibrium flow. The simulations are used to confirm the analytical predictions and to investigate the interfacial wave structure. The bottom profile considered in this investigation corresponds to periodic undulations characterized by measures of wavelength and amplitude. Conclusions are drawn on the combined effect of bottom topography and surface tension.

1.
S.
Alekseenko
,
V.
Nakoryakov
, and
B.
Pokusaev
, “
Wave formation on a vertical falling liquid film
,”
AIChE J.
31
,
1446
(
1985
).
2.
P.
Julien
and
D.
Hartley
, “
Formation of roll waves in laminar sheet flow
,”
J. Hydraul. Res.
24
,
5
(
1986
).
3.
T. B.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
(
1957
).
4.
C. -S.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
,
321
(
1963
).
5.
J.
Liu
,
J. D.
Paul
, and
J. P.
Gollub
, “
Measurements of the primary instabilities of film flows
,”
J. Fluid Mech.
250
,
69
(
1993
).
6.
V. Y.
Shkadov
, “
“Wave conditions in flow of thin layer of a viscous liquid under the action of gravity
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
1
,
43
(
1967
).
7.
T.
Prokopiou
,
M.
Cheng
, and
H. -C.
Chang
, “
Long waves on inclined films at high Reynolds number
,”
J. Fluid Mech.
222
,
665
(
1991
).
8.
H.
Uecker
, “
Approximation of the integral boundary layer equation by the Kuramoto–Sivashinsky equation
,”
SIAM J. Appl. Math.
63
,
1359
(
2003
).
9.
C.
Ruyer-Quil
and
P.
Manneville
, “
Improved modeling of flows down inclined planes
,”
Eur. Phys. J. B
15
,
357
(
2000
).
10.
J.
Liu
,
B.
Schneider
, and
J. P.
Gollub
, “
Three-dimensional instabilities of film flows
,”
Phys. Fluids
7
,
55
(
1995
).
11.
B.
Ramaswamy
,
S.
Chippada
, and
S. W.
Joo
, “
A full-scale numerical study of interfacial instabilities in thin-film flows
,”
J. Fluid Mech.
325
,
163
(
1996
).
12.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
54
,
150
(
1966
).
13.
B.
Hunt
, “
Newtonian fluid mechanics treatment of debris flows and avalanches
,”
J. Hydraul. Eng.
120
,
1350
(
1994
).
14.
C. -O.
Ng
and
C. C.
Mei
, “
Roll waves on a shallow layer of mud modelled as a power-law fluid
,”
J. Fluid Mech.
263
,
151
(
1994
).
15.
Q.
Liu
,
L.
Chen
,
J.
Li
, and
V.
Singh
, “
Roll waves in overland flow
,”
J. Hydrol. Eng.
10
,
110
(
2005
).
16.
S.
Montes
,
Hydraulics of Open Channel Flow
(
ASCE
,
Reston, VA
,
1998
).
17.
Y. Y.
Trifonov
, “
Viscous liquid film flows over a periodic surface
,”
Int. J. Multiphase Flow
24
,
1139
(
1998
).
18.
C.
Heining
,
V.
Bontozoglou
,
N.
Aksel
, and
A.
Wierschem
, “
Nonlinear resonance in viscous films on inclined wavy planes
,”
Int. J. Multiphase Flow
35
,
78
(
2009
).
19.
H.
Tougou
, “
Long waves on a film flow of a viscous fluid down an inclined uneven wall
,”
J. Phys. Soc. Jpn.
44
,
1014
(
1978
).
20.
R.
Usha
and
B.
Uma
, “
Long waves on a viscoelastic film flow down a wavy incline
,”
Int. J. Non-Linear Mech.
39
,
1589
(
2004
).
21.
L. A.
Davalos-Orozco
, “
Nonlinear instability of a thin film flowing down a smoothly deformed surface
,”
Phys. Fluids
19
,
074103
(
2007
).
22.
A.
Wierschem
,
C.
Lepski
, and
N.
Aksel
, “
Effect of long undulated bottoms on thin gravity-driven films
,”
Acta Mech.
179
,
41
(
2005
).
23.
M.
Vlachogiannis
and
V.
Bontozoglou
, “
Experiments on laminar film flow along a periodic wall
,”
J. Fluid Mech.
457
,
133
(
2002
).
24.
Y. Y.
Trifonov
, “
Stability and nonlinear wavy regimes in downward film flows on a corrugated surface
,”
J. Appl. Mech. Tech. Phys.
48
,
91
(
2007
).
25.
Y. Y.
Trifonov
, “
Stability of a viscous liquid film flowing down a periodic surface
,”
Int. J. Multiphase Flow
33
,
1186
(
2007
).
26.
R. E.
Khayat
and
K. T.
Kim
, “
Thin-film flow of a viscoelastic fluid on an axisymmetric substrate of arbitrary shape
,”
J. Fluid Mech.
552
,
37
(
2006
).
27.
A.
Oron
and
C.
Heining
, “
Weighted-residual integral boundary-layer model for the nonlinear dynamics of thin liquid films falling on an undulating vertical wall
,”
Phys. Fluids
20
,
082102
(
2008
).
28.
N. J.
Balmforth
and
S.
Mandre
, “
Dynamics of roll waves
,”
J. Fluid Mech.
514
,
1
(
2004
).
29.
R. F.
Dressler
, “
Mathematical solution of the problem of roll waves in inclined open channels
,”
Commun. Pure Appl. Math.
2
,
149
(
1949
).
30.
D.
Needham
and
J.
Merkin
, “
On roll waves down an open inclined channel
,”
Proc. R. Soc. London, Ser. A
394
,
259
(
1984
).
31.
C.
Ruyer-Quil
and
P.
Manneville
, “
Modeling film flows down inclined planes
,”
Eur. Phys. J. B
6
,
277
(
1998
).
32.
J. -J.
Lee
and
C. C.
Mei
, “
Stationary waves on an inclined sheet of viscous fluid at high Reynolds and moderate Weber numbers
,”
J. Fluid Mech.
307
,
191
(
1996
).
33.
C.
Ruyer-Quil
and
P.
Manneville
, “
Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations
,”
Phys. Fluids
14
,
170
(
2002
).
34.
C.
Kranenburg
, “
On the evolution of roll waves
,”
J. Fluid Mech.
245
,
249
(
1992
).
35.
B. S.
Brook
,
T. J.
Pedley
, and
S. A.
Falle
, “
Numerical solutions for unsteady gravity-driven flows in collapsible tubes: Evolution and roll-wave instability of a steady state
,”
J. Fluid Mech.
396
,
223
(
1999
).
36.
H. -C.
Chang
,
E. A.
Demekhin
, and
E.
Kalaidin
, “
Coherent structures, self-similarity and universal roll wave coarsening dynamics
,”
Phys. Fluids
12
,
2268
(
2000
).
37.
B.
Zanuttigh
and
A.
Lamberti
, “
Roll waves simulation using shallow water equations and weighted average flux method
,”
J. Hydraul. Res.
553
,
610
(
2002
).
38.
J. P.
Pascal
and
S. J. D.
D’Alessio
, “
Instability of power-law fluid flows down an incline subjected to wind stress
,”
Appl. Math. Model.
31
,
1229
(
2007
).
39.
R. J.
Leveque
, “
Wave propagation algorithms for multi-dimensional hyperbolic systems
,”
J. Comput. Phys.
131
,
327
(
1997
).
40.
D. S.
Bale
,
R. J.
Leveque
,
S.
Mitran
, and
J. A.
Rossmanith
, “
A wave propagation method for conservation laws and balance laws with spatially varying flux functions
,”
SIAM J. Sci. Comput. (USA)
24
,
955
(
2003
).
41.
H. -C.
Chang
, “
Wave evolution on a falling film
,”
Annu. Rev. Fluid Mech.
26
,
103
(
1994
).
42.
R. R.
Brock
, “
Development of roll-wave trains in open channels
,”
J. Hydr. Div.
95
,
1401
(
1969
).
You do not currently have access to this content.