A study of multicomponent reacting channel flows with significant heat transfer and low Mach number has been performed using a set of direct and wall-resolved large-eddy simulations (LES). The Reynolds number based on the channel half-height and the mean friction velocity is Reτ=300 for DNS and Reτ=1000 for wall-resolved LES. Two temperature ratios based on the mean centerline temperature Tc and the temperature at the wall, Tw, are investigated: Tc/Tw=1.1 for DNS and Tc/Tw=3 for wall-resolved LES. The mass/momentum/energy balances are investigated, specially showing the changes induced by multicomponent terms of the Navier–Stokes equations. Concerning the flow dynamics, the data support the validity of the Van Driest transformation for compressible reacting flows. Concerning heat transfer, two multicomponent terms arise in the energy conservation balance: the laminar species diffusion which appears to be negligible in the turbulent core and the turbulent flux of chemical enthalpy which cannot be neglected. The data also show that the mean composition of the mixture is at equilibrium state; a model for the turbulent flux of chemical enthalpy is then proposed and validated. Finally, models for the total shear stress and the total heat flux are formulated and integrated in the wall normal direction to retrieve an analytical law of the wall. This wall model is tested favorably against the simulation database.

1.
L.
Prandtl
, “
Über Flussigkeitsbewegung bei sehr kleiner Reibung
,”
Verhandlungen des dritten internationalen Mathematiker-Kongresses
(
Teubner
,
Leipzig, Germany
,
1905
), pp.
484
491
.
2.
H.
Blasius
, “
Boundary layers in fluids with small friction
,”
Zeitschrift fuer Mathematische und Physik
56
,
1
(
1908
).
3.
T.
von Kármán
, “
Über laminare und turbulente Reibung
,”
Z. Angew. Math. Mech.
1
,
233
(
1921
).
4.
T.
von Kármán
, “
Mechanische Ahnlichkeit und Turbulenz
,”
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
5
,
58
(
1930
).
5.
F. H.
Clauser
, “
The turbulent boundary layer
,”
Adv. Appl. Mech.
4
,
1
(
1956
).
6.
S. V.
Patankar
and
D. B.
Spalding
,
Heat and Mass Transfer in Boundary Layers
(
Morgan-Grampian
,
London
,
1967
).
7.
C. A.
Sleicher
and
M. W.
Rouse
, “
Convenient correlation for heat transfert to constant and variable property fluids in turbulent pipe flow
,”
Int. J. Heat Mass Transfer
18
,
677
(
1975
).
8.
B. A.
Kader
, “
Temperature and concentration profiles in fully turbulent boundary layers
,”
Int. J. Heat Mass Transfer
24
,
1541
(
1981
).
9.
H.
Fernholz
and
P.
Finley
, “
A critical compilation of compressible turbulent boundary layer data
,” Report No. AGARD-AG-223, Advisory Group for Aerospace Research and Development, Neuilly, France,
1977
.
10.
P.
Bradshaw
, “
Compressible turbulent shear layers
,”
Annu. Rev. Fluid Mech.
9
,
33
(
1977
).
11.
E. F.
Spina
,
A. J.
Smits
, and
S. K.
Robinson
, “
The physics of supersonic turbulent boundary layers
,”
Annu. Rev. Fluid Mech.
26
,
287
(
1994
).
12.
G. N.
Coleman
,
J.
Kim
, and
R. D.
Moser
, “
A numerical study of turbulent supersonic isothermal-wall channel flow
,”
J. Fluid Mech.
305
,
159
(
1995
).
13.
P. G.
Huang
,
G. N.
Coleman
, and
P.
Bradshaw
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
(
1995
).
14.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
(
1998
).
15.
Y.
Morinishi
,
S.
Tamano
, and
K.
Nakabayashi
, “
Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls
,”
J. Fluid Mech.
502
,
273
(
2004
).
16.
P.
Moin
and
J.
Kim
, “
Numerical investigation of turbulent channel flow
,”
J. Fluid Mech.
118
,
341
(
1982
).
17.
S.
Völker
,
R. D.
Moser
, and
P.
Venugopal
, “
Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data
,”
Phys. Fluids
14
,
3675
(
2002
).
18.
W.
Wang
and
R. H.
Pletcher
, “
On the large eddy simulation of a turbulent channel flow with significant heat transfer
,”
Phys. Fluids
8
,
3354
(
1996
).
19.
L. D.
Dailey
,
N.
Meng
, and
R. H.
Pletcher
, “
Large eddy simulation of constant heat flux turbulent channel flow with property variations: Quasi-developed model and mean flow results
,”
J. Heat Transfer
125
,
27
(
2003
).
20.
C.
Brun
,
M. P.
Boiarciuc
,
M.
Haberkorn
, and
P.
Comte
, “
Large eddy simulation of compressible channel flow
,”
Theor. Comput. Fluid Dyn.
22
,
189
(
2008
).
21.
M. V.
Morkovin
, “
Effects of compressibility on turbulent flows
,” in
The International Symposium on the Mechanics of Turbulence
, 28 Aug–2 Sept 1961, Marseilles, France, edited by
A.
Favre
(
Gordon and Breach
,
New York
,
1964
), pp.
367
380
.
22.
E. R.
Van Driest
, “
Turbulent boundary layer in compressible fluids
,”
Journal of the Aeronautical Sciences
18
,
145
(
1951
).
23.
E. R.
Keener
and
E. J.
Hopkins
, “
Van driest generalization applied to turbulent skin friction and velocity profiles measured on the wall of a Mach 7.4 wind tunnel
,”
AIAA J.
11
,
1784
(
1973
).
24.
H.
Fernholz
and
P.
Finley
, “
A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers
,” Report No. AGARD-AG-253, Advisory Group for Aerospace Research and Development, Neuilly, France,
1980
.
25.
P. G.
Huang
,
P.
Bradshaw
, and
T. J.
Coakley
, “
Skin friction and velocity profile family for compressible turbulent boundary layers
,”
AIAA J.
31
,
1600
(
1993
).
26.
R. M. C.
So
,
H. S.
Zhang
,
T. B.
Gatski
, and
C. G.
Speziale
, “
Logarithmic laws for compressible turbulent boundary layers
,”
AIAA J.
32
,
2162
(
1994
).
27.
P. G.
Huang
and
G. N.
Coleman
, “
Van driest transformation and compressible wall-bounded flows
,”
AIAA J.
32
,
2110
(
1994
).
28.
F.
Nicoud
, “
Numerical study of a channel flow with variable properties
,” Center for Turbulence Research, NASA Ames/Stanford University Annual Research Briefs,
1998
, pp.
289
310
.
29.
M. P.
Martín
and
G. V.
Candler
, “
DNS of a Mach 4 boundary layer with chemical reactions
,” AIAA Pap. 2000-0399,
2000
.
30.
M. P.
Martín
and
G. V.
Candler
, “
Temperature-fluctuation scaling in reacting boundary layers
,” Center for Turbulence Research, NASA Ames/Stanford University Annual Research Briefs,
2001
, pp.
151
162
.
31.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
(
1987
).
32.
R. K.
Cheng
and
T. T.
Ng
, “
Some aspects of strongly heated turbulent boundary layer flow
,”
Phys. Fluids
25
,
1333
(
1982
).
33.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ=590
,”
Phys. Fluids
11
,
943
(
1999
).
34.
M.
Teitel
and
R. A.
Antonia
, “
Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations
,”
Int. J. Heat Mass Transfer
36
,
1701
(
1993
).
35.
S.
Hoyas
and
J.
Jiménez
, “
Scaling the velocity fluctuations in turbulent channel up to Reτ=2003
,”
Phys. Fluids
18
,
011702
(
2006
).
36.
J.
Jiménez
and
R. D.
Moser
, “
What are we learning from simulating wall turbulence?
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
715
(
2007
).
37.
B.
Mohammadi
and
G.
Puigt
, “
Wall functions in computational fluid mechanics
,”
Comput. Fluids
35
,
1108
(
2006
).
38.
J. M.
Österlund
,
A. V.
Johansson
,
H. M.
Nagib
, and
M. H.
Hites
, “
A note on the overlap region in turbulent boundary layers
,”
Phys. Fluids
12
,
1
(
2000
).
39.
M. H.
Buschmann
and
M.
Gad-el Hak
, “
Debate concerning the mean-velocity profile of a turbulent boundary layer
,”
AIAA J.
41
,
565
(
2003
).
40.
M. H.
Buschmann
and
M.
Gad-el Hak
, “
Structure of the canonical turbulent wall-bounded flow
,”
AIAA J.
44
,
2500
(
2006
).
41.
P. A.
Davidson
,
T. B.
Nickels
, and
P. Å.
Krogstad
, “
The logarithmic structure function law in wall-layer turbulence
,”
J. Fluid Mech.
550
,
51
(
2006
).
42.
T. H.
Shih
,
L. A.
Povinelli
,
N. S.
Liu
,
M. G.
Potapczuk
, and
J. L.
Lumley
, “
A generalized wall function
,”
NASA
Report No. TM-1999-209398,
1999
.
43.
T. H.
Shih
,
L. A.
Povinelli
, and
N. S.
Liu
, “
Application of generalized wall function for complex turbulent flows
,”
J. Turbul.
4
,
1
(
2003
).
44.
T. J.
Craft
,
A. V.
Gerasimov
,
H.
Iacovides
, and
B. E.
Launder
, “
Progress in the generalization of wall-function treatments
,”
Int. J. Heat Fluid Flow
23
,
148
(
2002
).
45.
M. H.
Buschmann
and
M.
Gad-el Hak
, “
Generalized logarithmic law and its consequences
,”
AIAA J.
41
,
40
(
2003
).
46.
S. V.
Utyuzhnikov
, “
Some new approaches to building and implementation of wall-functions for modeling of near-wall turbulent flows
,”
Comput. Fluids
34
,
771
(
2005
).
47.
P. G.
Huang
and
P.
Bradshaw
, “
Law of the wall for turbulent flows in pressure gradients
,”
AIAA J.
33
,
624
(
1995
).
48.
M.
Skote
and
D. S.
Henningson
, “
Analysis of the data base from a DNS of a separating turbulent boundary layer
,” Center for Turbulence Research, NASA Ames/Stanford University Annual Research Briefs,
1999
, pp.
225
237
.
49.
M.
Skote
and
D. S.
Henningson
, “
Direct numerical simulation of a separated turbulent boundary layer
,”
J. Fluid Mech.
471
,
107
(
2002
).
50.
T. B.
Nickels
, “
Inner scaling for wall-bounded flows subject to large pressure gradients
,”
J. Fluid Mech.
521
,
217
(
2004
).
51.
T.
Houra
and
Y.
Nagano
, “
Effects of adverse pressure gradient on heat transfer mechanism in thermal boundary layer
,”
Int. J. Heat Fluid Flow
27
,
967
(
2006
).
52.
K.
Suga
,
T. J.
Craft
, and
H.
Iacovides
, “
An analytical wall-function for turbulent flows and heat transfer over rough walls
,”
Int. J. Heat Fluid Flow
27
,
852
(
2006
).
53.
F.
Nicoud
and
P.
Bradshaw
, “
A velocity transformation for heat and mass transfer
,”
Phys. Fluids
12
,
237
(
2000
).
54.
Z.
Han
and
R. D.
Reitz
, “
A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling
,”
Int. J. Heat Mass Transfer
40
,
613
(
1997
).
55.
R. L.
Simpson
, “
Characteristics of turbulent boundary layers at low Reynolds numbers with and without transpiration
,”
J. Fluid Mech.
42
,
769
(
1970
).
56.
C. S.
Subramanian
and
R. A.
Antonia
, “
Effect of Reynolds number on a slightly heated turbulent boundary layer
,”
Int. J. Heat Mass Transfer
24
,
1833
(
1981
).
57.
T. J.
Craft
,
S. E.
Gant
,
H.
Iacovides
, and
B. E.
Launder
, “
A new wall function strategy for complex turbulent flows
,”
Numer. Heat Transfer, Part B
45
,
301
(
2004
).
58.
T. J.
Craft
,
S. E.
Gant
,
A. V.
Gerasimov
,
H.
Iacovides
, and
B. E.
Launder
, “
Development and application of wall-function treatments for turbulent forced and mixed convection flows
,”
Fluid Dyn. Res.
38
,
127
(
2006
).
59.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
, 2nd ed. (
Edwards
,
Ann Arbor
,
2005
).
60.
K. K.
Kuo
,
Principles of Combustion
, 2nd ed. (
Wiley
,
Hoboken
,
2005
).
61.
J.
Amaya
,
O.
Cabrit
,
D.
Poitou
,
B.
Cuenot
, and
M.
El Hafi
, in
Proceedings of Eurotherm 83—Computational Thermal Radiation in Participating Media III
, Lisbon, Portugal, 15–17 April
2009
(
IST
,
Lisboa
,
2009
), pp.
185
196
.
62.
E. M.
Sparrow
,
R.
Eichhorn
, and
J. L.
Gregg
, “
Combined forced and free convection in a boundary layer flow
,”
Phys. Fluids
2
,
319
(
1959
).
63.
F.
Nicoud
,
J. C.
Traineau
, and
M.
Prévost
, “
Evolution of heat flux with mass flow rate in a subscale setup for the Ariane 5 solide rocket booster
,” in
Second International Symposium on Engineering Turbulence Modelling and Measurements
, Florence, Italy, 31 May 31–2 June
1993
(
ONERA
,
Châtillon
,
1993
), Report No. 146.
64.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O’Connell
,
The Properties of Gases and Liquids
, 5th ed. (
McGraw-Hill
,
New York
,
2001
).
65.
D. Y.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
,
59
(
1976
).
66.
J. O.
Hirschfelder
,
F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1964
).
67.
V.
Giovangigli
,
Multicomponent Flow Modeling
(
Birkhäuser
,
Boston
,
1999
).
68.
A.
Ern
and
V.
Giovangigli
,
Multicomponent Transport Algorithms
,
Lecture Notes in Physics, New Series Monographs
Vol.
24
(
Springer-Verlag
,
Heidelberg
,
1994
).
69.
A.
Ern
and
V.
Giovangigli
, “
Fast and accurate multicomponent transport property evaluation
,”
J. Comput. Phys.
120
,
105
(
1995
).
70.
J.
Jiménez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
(
1991
).
71.
V.
Moureau
,
G.
Lartigue
,
Y.
Sommerer
,
C.
Angelberger
,
O.
Colin
, and
T.
Poinsot
, “
Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids
,”
J. Comput. Phys.
202
,
710
(
2005
).
72.
P.
Schmitt
,
T.
Poinsot
,
B.
Schuermans
, and
K. P.
Geigle
, “
Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner
,”
J. Fluid Mech.
570
,
17
(
2007
).
73.
S.
Mendez
and
F.
Nicoud
, “
Large-eddy simulation of a bi-periodic turbulent flow with effusion
,”
J. Fluid Mech.
598
,
27
(
2008
).
74.
O.
Colin
and
M.
Rudgyard
, “
Development of high-order Taylor-Galerkin schemes for unsteady calculations
,”
J. Comput. Phys.
162
,
338
(
2000
).
75.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combus.
62
,
183
(
1999
).
76.
P. S.
Andersen
,
W. M.
Kays
, and
R. J.
Moffat
, “
Experimental results for the transpired turbulent boundary layer in an adverse pressure gradient
,”
J. Fluid Mech.
69
,
353
(
1975
).
77.
W. M.
Kays
,
M. E.
Crawford
, and
B.
Weigand
,
Convective Heat and Mass Transfer
(
McGraw-Hill
,
New York
,
2004
).
78.
J. C.
del Álamo
and
J.
Jiménez
, “
Spectra of the very large anisotropic scales in turbulent channels
,”
Phys. Fluids
15
,
L41
(
2003
).
79.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
(
2004
).
80.
K. C.
Kays
, “
Turbulent Prandtl number. Where are we?
J. Heat Transfer
116
,
284
(
1994
).
81.
B. E.
Launder
and
D. B.
Spalding
, “
The numerical computation of turbulent flows
,”
Comput. Methods Appl. Mech. Eng.
3
,
269
(
1974
).
You do not currently have access to this content.