This work is motivated by the need to understand physical mechanisms governing near-field phenomena, such as flame lift-off, in high-Reynolds number jet flames. Numerical studies of vortex-induced flame extinction/reignition are performed for conditions representative of the near field of high-Reynolds number (100000) jets under high pressure and temperature conditions. The governing equations for compressible, viscous, and reacting flows are solved along with a single-step irreversible chemical kinetic model for gaseous n-heptane oxidation. Extinction/reignition phenomena, influenced by unsteady and curvature effects, are observed. Unsteady flamelet/progress variable models are shown to accurately describe the flame response during extinction/reignition observed in the flame-vortex studies. Furthermore, while unsteady effects on extinction/reignition are found to diminish with weaker vortices and relatively strong flames, curvature effects are found to increase with relatively thicker flames. The observed flame-vortex interaction regimes are summarized on an outcome diagram, which is useful to understand the nature of localized flame dynamics in the near field of jet flames.

1.
D. L.
Siebers
,
B. S.
Higgins
and
L. M.
Pickett
, “
Flame lift-off on direct-injection diesel fuel jets: Oxygen concentration effects
,” SAE Paper No. 2002-01-0890 (Society of Automotive Engineers, Warrendale, PA,
2002
).
2.
L. M.
Pickett
and
D. L.
Siebers
, “
Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure
,”
Combust. Flame
138
,
114
(
2004
).
3.
R.
Venugopal
and
J.
Abraham
, “
A review of fundamental studies relevant to flame lift-off in diesel jets
,” SAE Paper No. 2007-01-0134 (Society of Automotive Engineers, Warrendale, PA,
2007
);
also appears in
R.
Venugopal
and
J.
Abraham
, “
A review of fundamental studies relevant to flame lift-off in diesel jets
,”
SAE Trans. J. Eng.
116
,
132
(
2007
).
4.
R.
Venugopal
and
J.
Abraham
, “
A numerical investigation of flame lift-off in diesel jets
,”
Combust. Sci. Technol.
179
,
2599
(
2007
).
5.
P. K.
Senecal
,
E.
Pomraning
, and
K. J.
Richards
, “
Multidimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry
,” SAE Paper No. 2003-01-1043 (Society of Automotive Engineers, Warrendale, PA,
2003
).
6.
R. R.
Cao
,
S. B.
Pope
, and
A. R.
Masri
, “
Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations
,”
Combust. Flame
142
,
438
(
2005
).
7.
S. K.
Aggarwal
, “
A review of spray ignition phenomena: present status and future research
,”
Prog. Energy Combust. Sci.
24
,
565
(
1998
).
8.
L.
Vervisch
and
T.
Poinsot
, “
Direct numerical simulation of non-premixed turbulent flames
,”
Annu. Rev. Fluid Mech.
30
,
655
(
1998
).
9.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge, UK
,
2000
), pp.
229
235
.
10.
H. G.
Im
and
J. H.
Chen
, “
Structure and propagation of triple flames in partially-premixed hydrogen-air mixtures
,”
Combust. Flame
119
,
436
(
1999
).
11.
N.
Peters
and
F. A.
Williams
, “
Lift-off characteristics of turbulent jet diffusion flames
,”
AIAA J.
21
,
423
(
1983
).
12.
V. S.
Santoro
,
D. C.
Kyritsis
,
A.
Linan
, and
A.
Gomez
, “
Vortex-induced extinction behavior in methanol gaseous flames: A comparison with quasi-steady extinction
,”
Proc. Combust. Inst.
28
,
2109
(
2000
).
13.
V. R.
Katta
,
T. R.
Meyer
,
M. S.
Brown
,
J. R.
Gord
, and
W. M.
Roquemore
, “
Extinction criterion for unsteady, opposing-jet diffusion flames
,”
Combust. Flame
137
,
198
(
2004
).
14.
C. B.
Oh
,
C. E.
Lee
, and
J.
Park
, “
Numerical investigation of extinction in a counterflow non-premixed flame perturbed by a vortex
,”
Combust. Flame
138
,
225
(
2004
).
15.
R.
Venugopal
and
J.
Abraham
, “
A 2-D DNS investigation of extinction and reignition dynamics in non-premixed flame-vortex interactions
,”
Combust. Flame
153
,
442
(
2008
).
16.
V. S.
Santoro
,
A.
Linan
, and
A.
Gomez
, “
Propagation of edge flames in counterflow mixing layers: experiments and theory
,”
Proc. Combust. Inst.
28
,
2039
(
2000
).
17.
V. S.
Santoro
and
A.
Gomez
, “
Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices
,”
Proc. Combust. Inst.
29
,
585
(
2002
).
18.
P.
Sripakagorn
,
S.
Mitarai
,
G.
Kosaly
, and
H.
Pitsch
, “
Extinction and reignition in a diffusion flame: A direct numerical simulation study
,”
J. Fluid Mech.
518
,
231
(
2004
).
19.
M.
Hermanns
,
M.
Vega
, and
A.
Linan
, “
On the dynamics of flame-edges in diffusion-flame/vortex interactions
,”
Combust. Flame
149
,
32
(
2007
).
20.
R.
Venugopal
and
J.
Abraham
, “
Numerical investigations of reignition in vortex-perturbed n-heptane non-premixed flames
,”
AIAA J.
46
,
2479
(
2008
).
21.
J. D.
Buckmaster
, “
Edge flames
,”
Prog. Energy Combust. Sci.
28
,
435
(
2002
).
22.
G.
Amantini
,
J. H.
Frank
, and
A.
Gomez
, “
Experiments on standing and traveling edge flames around flame holes
,”
Proc. Combust. Inst.
30
,
313
(
2005
).
23.
G.
Amantini
,
J. H.
Frank
,
B. A. V.
Bennett
,
M. D.
Smooke
, and
A.
Gomez
, “
Comprehensive study of the evolution of an annular edge flame during extinction and reignition of a counterflow diffusion flame perturbed by vortices
,”
Combust. Flame
150
,
292
(
2007
).
24.
J.
Abraham
and
V.
Magi
, “
Exploring velocity and density ratio effects in a mixing layer using DNS
,”
Int. J. Comput. Fluid Dyn.
8
,
147
(
1997
).
25.
A.
Viggiano
and
V.
Magi
, “
A 2-D investigation of n-heptane autoignition by means of direct numerical simulation
,”
Combust. Flame
137
,
432
(
2004
).
26.
J. W.
Anders
,
V.
Magi
, and
J.
Abraham
, “
Large-eddy simulation in the near field of a transient multicomponent gas jet with density gradients
,”
Comput. Fluids
36
,
1609
(
2007
).
27.
S. K.
Lele
, “
Finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
28.
B.
Carnahan
,
Applied Numerical Methods
(
Wiley
,
New York
,
1969
), p.
363
.
29.
T. J.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
30.
S.
Liu
,
J. C.
Hewson
,
J. H.
Chen
, and
H.
Pitsch
, “
Effects of strain rate on high-pressure non-premixed n-heptane autoignition in counterflow
,”
Combust. Flame
137
,
320
(
2004
).
31.
A. R.
Karagozian
and
F. E.
Marble
, “
Study of a diffusion flame in a stretched vortex
,”
Combust. Sci. Technol.
45
,
65
(
1986
).
32.
P. H.
Renard
,
J. C.
Rolon
,
D.
Thevenin
, and
S.
Candel
, “
Dynamics of flame/vortex interactions
,”
Prog. Energy Combust. Sci.
26
,
225
(
2000
).
33.
C.
Safta
,
S.
Enachescu
, and
C. K.
Madnia
, “
Interaction of a vortex ring with a diffusion flame
,”
Phys. Fluids
14
,
668
(
2002
).
34.
S.
Sreedhara
and
K. N.
Lakshmisha
, “
Direct numerical simulation of autoignition in a non-premixed turbulent medium
,”
Proc. Combust. Inst.
28
,
25
(
2002
).
35.
R.
Seiser
,
H.
Pitsch
,
K.
Seshadri
,
W. J.
Pitz
, and
H. J.
Curran
, “
Extinction and autoignition of n-heptane in counterflow configuration
,”
Proc. Combust. Inst.
28
,
2029
(
2000
).
36.
V.
Iyer
and
J.
Abraham
, “
Penetration and dispersion of transient gas jets and sprays
,”
Combust. Sci. Technol.
130
,
315
(
1997
).
37.
R.
Venugopal
, “
Numerical simulations of flame dynamics in the near-field of high-Reynolds number jets
,” Ph.D. thesis, Purdue University,
2008
.
38.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
), pp.
101
and
108
.
39.
C. D.
Pierce
and
P.
Moin
, “
Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion
,”
J. Fluid Mech.
504
,
73
(
2004
).
40.
H.
Pitsch
and
M.
Ihme
, “
An unsteady flamelet/progress variable method for LES of non-premixed turbulent combustion
,” AIAA Paper No. 2005-0557 (American Institute of Aeronautics and Astronautics, Reston, VA,
2005
).
41.
A. W.
Vreman
,
B. A.
Albrecht
,
J. A.
van Oijen
,
L. P. H.
de Goey
, and
R. J. M.
Bastiaans
, “
Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F
,”
Combust. Flame
153
,
394
(
2008
).
42.
I.
Wygnanski
and
H.
Fiedler
, “
Some measurements in the self-preserving jet
,”
J. Fluid Mech.
38
,
577
(
1969
).
43.
M.
Namazian
,
R. W.
Schefer
, and
J.
Kelly
, “
Scalar dissipation measurements in the developing region of a jet
,”
Combust. Flame
74
,
147
(
1988
).
44.
D.
Thevenin
,
D. P. H.
Renard
,
C. J.
Fiechetner
,
J. R.
Gord
, and
J. C.
Rolon
, “
Regimes of non-premixed flame-vortex interactions
,”
Proc. Combust. Inst.
28
,
719
(
2000
).
45.
B.
Cuenot
and
T.
Poinsot
, “
Effects of curvature and unsteadiness on diffusion flames: implications for turbulent diffusion combustion
,”
Sym. (Int.) Combust., [Proc.]
25
,
1383
(
1994
).
You do not currently have access to this content.