The steady planar and cylindrical stick-slip flows for a viscoelastic fluid are computed using the Phan-Thien and Tanner (PTT) constitutive model. The mixed finite element method is used in combination with the elastic-viscous stress-splitting technique and the streamline upwind Petrov–Galerkin discretization for the constitutive equation. This combination of methods when applied to the PTT constitutive model allows us to compute steady state solutions up to high Weissenberg numbers; practically without an upper limit. Equally important, the global Jacobian matrix is generated in order to be able to perform a linear stability analysis of the computed steady state. The dependence of the steady solutions on all the problem parameters is examined. In the limit of a Newtonian fluid, the expansion coefficients near the singularity are computed with comparable accuracy to those from previous analytical and numerical studies, which include the singular finite element method. In the case of a viscoelastic liquid, it is shown that the computed solutions converge quadratically with mesh refinement even at the exit plane of the die and also locally very close to the singularity. The form of the converged solution near the singularity is examined as well as its dependence on various rheological parameters. It is shown that the singularity at the die exit is a logarithmic one and always integrable. Under such conditions our calculations can be extended to determine the linear stability of the herein computed steady states.

1.
C. J. S.
Petrie
and
M. M.
Denn
, “
Instabilities in polymer processing
,”
AIChE J.
22
,
209
(
1976
).
2.
M. M.
Denn
, “
Issues in viscoelastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
22
,
13
(
1990
).
3.
M. M.
Denn
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
,
265
(
2001
).
4.
R. G.
Larson
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
(
1992
).
5.
N.
Phan-Thien
and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
(
1977
).
6.
N.
Phan-Thien
, “
A nonlinear network viscoelastic model
,”
J. Rheol.
22
,
259
(
1978
).
7.
R.
Natarajan
and
A.
Acrivos
, “
The instability of the steady flow past sphere and disks
,”
J. Fluid Mech.
254
,
323
(
1993
).
8.
M. D.
Smith
,
Y. L.
Joo
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders
,”
J. Non-Newtonian Fluid Mech.
109
,
13
(
2003
).
9.
S.
Richardson
, “
A ‘stick-slip’ problem related to the motion of a free jet at low Reynolds numbers
,”
Proc. Cambridge Philos. Soc.
67
,
477
(
1970
).
10.
D. B.
Ingham
and
M. A.
Kelmanson
,
Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems
(
Springer-Verlag
,
Berlin
,
1984
), pp.
21
51
.
11.
G. C.
Georgiou
,
L. G.
Olson
,
W. W.
Schultz
, and
S.
Sagan
, “
A singular finite element for stokes flow: The stick-slip problem
,”
Int. J. Numer. Methods Fluids
9
,
1353
(
1989
).
12.
R. I.
Tanner
and
X.
Huang
, “
Stress singularities in non-Newtonian stick-slip and edge flows
,”
J. Non-Newtonian Fluid Mech.
50
,
135
(
1993
).
13.
S. A.
Trogdon
and
D. D.
Joseph
, “
The stick-slip problem for a round jet I. Large surface tension
,”
Rheol. Acta
19
,
404
(
1980
).
14.
D. H.
Michael
, “
The separation of a viscous liquid at a straight edge
,”
Mathematika
5
,
82
(
1958
).
15.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
,
1
(
1964
).
16.
T. R.
Salamon
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
The role of surface tension in the dominant balance in the die swell singularity
,”
Phys. Fluids
7
,
2328
(
1995
).
17.
C. J.
Coleman
, “
On the use of boundary integral methods in the analysis of non-Newtonian fluid flow
,”
J. Non-Newtonian Fluid Mech.
16
,
347
(
1984
).
18.
J. M.
Marchal
and
M. J.
Crochet
, “
A new mixed finite element for calculating viscoelastic flow
,”
J. Non-Newtonian Fluid Mech.
26
,
77
(
1987
).
19.
J.
Rosenberg
and
R.
Keunings
, “
Numerical integration of differential viscoelastic models
,”
J. Non-Newtonian Fluid Mech.
39
,
269
(
1991
).
20.
R. G.
Owens
and
T. N.
Phillips
, “
A spectral domain decomposition method for the planar non-Newtonian stick-slip problem
,”
J. Non-Newtonian Fluid Mech.
41
,
43
(
1991
).
21.
T. R.
Salamon
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Local similarity solutions for the stress field of an Oldroyd-B fluid in the partial-slip/slip flow
,”
Phys. Fluids
9
,
2191
(
1997
).
22.
A.
Fortin
,
A.
Zine
, and
J. -F.
Agassant
, “
Computing viscoelastic fluid flow problems at low cost
,”
J. Non-Newtonian Fluid Mech.
45
,
209
(
1992
).
23.
F. P. T.
Baaijens
, “
Application of low-order discontinuous Galerkin methods to the analysis of viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
52
,
37
(
1994
).
24.
V.
Ngamaramvaranggul
and
M. F.
Webster
, “
Viscoelastic simulations of stick-slip and die-swell flows
,”
Int. J. Numer. Methods Fluids
36
,
539
(
2001
).
25.
D.
Rajagopalan
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Finite element methods for calculation of steady, viscoelastic flow using constitutive equations with Newtonian viscosity
,”
J. Non-Newtonian Fluid Mech.
36
,
159
(
1990
).
26.
R. A.
Brown
,
M. J.
Szady
,
P. J.
Northey
, and
R. C.
Armstrong
, “
On the numerical stability of mixed finite-element methods for viscoelastic flows governed by differential constitutive equations
,”
Theor. Comput. Fluid Dyn.
5
,
77
(
1993
).
27.
D. O.
Cruz
,
A.
Pinho
, and
F. T.
Oliveira
, “
Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution
,”
J. Non-Newtonian Fluid Mech.
132
,
28
(
2005
).
28.
M.
Pavlidis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Fully developed flow of a viscoelastic film down a vertical cylindrical or planar wall
,”
Rheol. Acta
48
,
1031
(
2009
).
29.
A. N.
Brooks
and
T. J. R.
Hughes
, “
Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
32
,
199
(
1982
).
30.
G.
Karapetsas
, “
A study on time-dependent and unstable under conditions flows of viscoplastic and viscoelastic fluids
,” Ph.D. thesis,
University of Patras
,
2007
.
31.
N.
Chatzidai
,
A.
Giannousakis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
On the elliptic mesh generation in domains containing multiple inclusions and undergoing large deformations
,”
J. Comput. Phys.
228
,
1980
(
2009
).
32.
T. J.
Chung
,
Computational Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
), pp.
533
580
.
33.
G.
Karapetsas
and
J.
Tsamopoulos
, “
Steady extrusion of viscoelastic materials from an annular die
,”
J. Non-Newtonian Fluid Mech.
154
,
136
(
2008
).
34.
O.
Schenk
and
K.
Gärtner
, “
Solving unsymmetric sparse systems of linear equations with PARDISO
,”
FGCS, Future Gener. Comput. Syst.
20
,
475
(
2004
).
35.
O.
Schenk
and
K.
Gärtner
, “
On fast factorization pivoting methods for symmetric indefinite systems
,”
Electron Trans. Numer. Anal.
23
,
158
(
2006
).
36.
M.
Elliotis
,
G.
Georgiou
, and
C.
Xenophontos
, “
Solution of the planar Newtonian stick-slip problem with the singular function boundary integral method
,”
Int. J. Numer. Methods Fluids
48
,
1001
(
2005
).
37.
K. B.
Broberg
,
Cracks and Fracture
(
Academic
,
San Diego
,
1999
), pp.
63
66
.
38.
M.
Renardy
, “
The stresses of an upper convected Maxwell fluid in a Newtonian velocity field near a re-entrant corner
,”
J. Non-Newtonian Fluid Mech.
50
,
127
(
1993
).
39.
M.
Renardy
, “
Re-entrant corner behaviour of the PTT fluid
,”
J. Non-Newtonian Fluid Mech.
69
,
99
(
1997
).
40.
E. J.
Hinch
, “
The flow of an Oldroyd fluid around a sharp corner
,”
J. Non-Newtonian Fluid Mech.
50
,
161
(
1993
).
41.
J. D.
Evans
and
D. N.
Sibley
, “
Re-entrant corner flow for PTT fluids in the Cartesian stress basis
,”
J. Non-Newtonian Fluid Mech.
153
,
12
(
2008
).
42.
J. D.
Evans
and
D. N.
Sibley
, “
Re-entrant corner flow for PTT fluids in the natural stress basis
,”
J. Non-Newtonian Fluid Mech.
157
,
79
(
2009
).
43.
R.
Keunings
, “
On the high Weissenberg number problem
,”
J. Non-Newtonian Fluid Mech.
20
,
209
(
1986
).
44.
T.
Hagen
and
M.
Renardy
, “
Boundary layer analysis of the Phan-Thien-Tanner and Giesekus model in high Weissenberg number flow
,”
J. Non-Newtonian Fluid Mech.
73
,
181
(
1997
).
You do not currently have access to this content.