The spectral and particle dispersion characteristics of steady multiscale laminar thin-layer flows are investigated through numerical simulations of a two-dimensional layer-averaged model. The model assumes a semiparabolic velocity profile and is solved using a semi-Lagrangian spline method. The main features of the flows are turbulentlike and consistent with previous experimental studies. The Eulerian wavenumber spectra and the Lagrangian frequency spectra oscillate around power laws that reflect the self-similarity of the forcing. In the weak forcing regime, the exponents of these power laws can be related to the multiscale geometry and the intensity scaling of the forcing. The Lagrangian spectra also show low-frequency plateaus, which arise from the slow motions far away from the applied forces. The absolute dispersion of tracer particles in these steady planar flows presents a ballistic stage followed by a diffusive regime, which results from the decorrelated motions of particles lying on streamlines of different periods. Relative dispersion shows an additional intermediate stage consisting of several separation bursts, which originate from the intense strain regions imposed by the different forcing scales. While these bursts can cause locally superquadratic mean square separation, the trapping by steady recirculation regions rules out an intermediate relative dispersion power law regardless of the number of scales in the flow.

1.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
Oxford
,
2004
).
2.
P.
Constantin
and
I.
Procaccia
, “
Scaling in fluid turbulence: A geometric theory
,”
Phys. Rev. E
47
,
3307
(
1993
).
3.
J.
Davila
and
J. C.
Vassilicos
, “
Richardson’s pair diffusion and the stagnation point structure of turbulence
,”
Phys. Rev. Lett.
91
,
144501
(
2003
).
4.
S.
Goto
and
J. C.
Vassilicos
, “
Particle pair diffusion and persistent streamline topology in two-dimensional turbulence
,”
New J. Phys.
6
,
65
(
2004
).
5.
L.
Rossi
,
J. C.
Vassilicos
, and
Y.
Hardalupas
, “
Electromagnetically controlled multi-scale flows
,”
J. Fluid Mech.
558
,
207
(
2006
).
6.
L.
Rossi
,
J. C.
Vassilicos
, and
Y.
Hardalupas
, “
Multiscale laminar flows with turbulentlike properties
,”
Phys. Rev. Lett.
97
,
144501
(
2006
).
7.
L.
Rossi
,
J. C.
Vassilicos
, and
Y.
Hardalupas
, “
Eulerian-Lagrangian aspects of a steady multiscale laminar flow
,”
Phys. Fluids
19
,
078108
(
2007
).
8.
B.
Juttner
,
D.
Marteau
,
P.
Tabeling
, and
A.
Thess
, “
Numerical simulations of experiments on quasi-two-dimensional turbulence
,”
Phys. Rev. E
55
,
5479
(
1997
).
9.
M. P.
Satijn
,
A. W.
Cense
,
R.
Verzicco
,
H. J. H.
Clercx
, and
G. J. F.
van Heijst
, “
Three-dimensional structure and decay properties of vortices in shallow fluid layers
,”
Phys. Fluids
13
,
1932
(
2001
).
10.
E.
Hascoët
,
L.
Rossi
, and
J. C.
Vassilicos
, in
IUTAM Symposium on Flow Control and MEMS
, edited by
J. F.
Morrison
,
D. M.
Birch
, and
P.
Lavoie
(
Springer
,
New York
,
2008
).
11.
R. A. D.
Akkermans
,
A. R.
Cieslik
,
L. P. J.
Kamp
,
R. R.
Trieling
,
H. J. H.
Clercx
, and
G. J. F.
van Heijst
, “
The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer
,”
Phys. Fluids
20
,
116601
(
2008
).
12.
S.
Lardeau
,
S.
Ferrari
, and
L.
Rossi
, “
Three-dimensional direct numerical simulation of electromagnetically driven multiscale shallow layer flows: Numerical modeling and physical properties
,”
Phys. Fluids
20
,
127101
(
2008
).
13.
P. A.
Davidson
,
An Introduction to Magnetohydrodynamics
(
Cambridge University Press
,
Cambridge
,
2001
).
14.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1962
).
15.
G. D.
Fulford
, “
Flow of liquids in thin films
,”
Adv. Chem. Eng.
5
,
151
(
1964
).
16.
S. A.
Nazarov
, “
Asymptotic solution of the Navier–Stokes problem on the flow of a thin-layer of fluid
,”
Sib. Math. J.
31
,
296
(
1990
).
17.
K.
Toraichi
,
M.
Kamada
,
S.
Itahashi
, and
R.
Mori
, “
Window functions represented by B-spline functions
,”
IEEE Trans. Acoust., Speech, Signal Process.
37
,
145
(
1989
).
18.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge, MA
,
1972
).
19.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
Cambridge
,
1992
).
20.
C.
de Boor
,
A Practical Guide to Splines
(
Springer
,
New York
,
1978
).
21.
O.
Botella
and
K.
Shariff
, “
B-spline methods in fluid dynamics
,”
Int. J. Comput. Fluid Dyn.
17
,
133
(
2003
).
22.
S. M.
Cox
and
P. C.
Matthews
, “
Exponential time differencing for stiff systems
,”
J. Comput. Phys.
176
,
430
(
2002
).
23.
A.
Staniforth
and
J.
Cote
, “
Semi-Lagrangian integration schemes for atmospheric models—A review
,”
Mon. Weather Rev.
119
,
2206
(
1991
).
24.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
5
,
506
(
1968
).
You do not currently have access to this content.