This study is focused on the tangential boundary layers of a bidirectional vortex, specifically those forming at the core and the sidewall of a swirl-driven cyclonic chamber. Our analysis is based on the regularized, tangential momentum equation which is rescaled in a manner to capture the forced vortex near the chamber axis and the no slip requirement at the sidewall. After identifying the coordinate transformations needed to resolve the rapid changes in the regions of nonuniformity, two inner expansions are constructed. These expansions are then matched with the outer, free vortex solution that is sandwiched between the core and the hard wall. By combining inner and outer expansions, uniformly valid approximations are subsequently obtained for the swirl velocity, vorticity, and pressure. These are shown to be strongly influenced by a dimensionless grouping that we refer to as the vortex Reynolds number, V. This keystone parameter appears as a ratio of the mean flow Reynolds number and the product of the swirl number and the chamber aspect ratio. Based on V, several fundamental features of the bidirectional vortex are quantified. Among them are the thicknesses of the viscous core and sidewall boundary layers; these decrease with V1/2 and V, respectively. The converse may be said of the peak velocity which increases with V1/2. In the same vein, the angular speed of the rigid-body rotation of the forced vortex is found to be linearly proportional to V. Our laminar swirl velocity is reminiscent of Sullivan’s two-cell vortex except for its additional dependence on the aspect ratio of the chamber. For the purpose of verification, theoretical predictions are compared to particle image velocimetry measurements and Navier–Stokes simulations at high vortex Reynolds numbers. By properly accounting for the turbulent eddy viscosity in the analytical model, local agreement is obtained with both laboratory measurements and computer simulations.

1.
J. K.
Harvey
, “
Some observations of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
585
(
1962
).
2.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
(
1978
).
3.
S.
Leibovich
, “
Vortex stability and breakdown: Survey and extension
,”
AIAA J.
22
,
1192
(
1984
).
4.
R. R.
Long
, “
Sources and sinks at the axis of a rotating liquid
,”
Q. J. Mech. Appl. Math.
9
,
385
(
1956
).
5.
J. M.
Burgers
, “
A mathematical model illustrating the theory of turbulence
,”
Adv. Appl. Mech.
1
,
171
(
1948
).
6.
C. W.
Oseen
, “
Uber Wirbelbewegune in einer reibenden Flussigkeit
,”
Ark. Mat., Astron. Fys.
7
,
14
(
1912
).
7.
G.
Hamel
, “
Spiralformige bewegung zaher Flussigkeit
,”
Jahresber. Dtsch. Math.-Ver.
25
,
34
(
1916
).
8.
H.
Schlichting
,
Boundary-Layer Theory
, 7th ed. (
McGraw-Hill
,
New York
,
1979
).
9.
W. S.
Lewellen
, “
A review of confined vortex flows
,”
NASA
Technical Report No. CR-1772,
1971
.
10.
G. H.
Vatistas
, “
Tangential velocity and static pressure distributions in vortex chambers
,”
AIAA J.
25
,
1139
(
1987
).
11.
D. F.
Kelsall
, “
A study of motion of solid particles in a hydraulic cyclone
,”
Trans. Inst. Chem. Eng.
30
,
87
(
1952
).
12.
J. L.
Smith
, “
An experimental study of the vortex in the cyclone separator
,”
J. Basic Eng.
84
,
602
(
1962
).
13.
J. L.
Smith
, “
An analysis of the vortex flow in the cyclone separator
,”
J. Basic Eng.
84
,
609
(
1962
).
14.
R. F.
Reydon
and
W. H.
Gauvin
, “
Theoretical and experimental studies of confined vortex flow
,”
Can. J. Chem. Eng.
59
,
14
(
1981
).
15.
G. H.
Vatistas
,
S.
Lin
, and
C. K.
Kwok
, “
Theoretical and experimental studies on vortex chamber flows
,”
AIAA J.
24
,
635
(
1986
).
16.
A.
Ogawa
, “
Estimation of the collection efficiencies of the three types of the cyclone dust collectors from the standpoint of the flow pattern in the cylindrical cyclone dust collectors
,”
Bull. JSME
27
,
64
(
1984
).
17.
A. J.
Hoekstra
,
J. J.
Derksen
, and
H. E. A.
Van den Akker
, “
An experimental and numerical study of turbulent swirling flow in gas cyclones
,”
Chem. Eng. Sci.
54
,
2055
(
1999
).
18.
L. Y.
Hu
,
L. X.
Zhou
,
J.
Zhang
, and
M. X.
Shi
, “
Studies of strongly swirling flows in the full space of a volute cyclone separator
,”
AIChE J.
51
,
740
(
2005
).
19.
J. J.
Derksen
and
H. E. A.
Van den Akker
, “
Simulation of vortex core precession in a reverse-flow cyclone
,”
AIChE J.
46
,
1317
(
2000
).
20.
D.
Fang
,
J.
Majdalani
, and
M. J.
Chiaverini
, “
Simulation of the cold-wall swirl driven combustion chamber
,” AIAA Paper No. 2003–5055, Huntsville, AL,
2003
.
21.
F.
Boysan
,
W. H.
Ayers
, and
J.
Swithenbank
, “
A fundamental mathematical modelling approach to cyclone design
,”
Am. Inst. Chem. Eng. Symp. Ser.
60
,
222
(
1982
).
22.
A. L.
Murray
,
A. J.
Gudgen
,
M. J.
Chiaverini
,
J. A.
Sauer
, and
W. H.
Knuth
, “
Numerical code development for simulating gel propellant combustion processes
,” JANNAF Paper No. 2004-0115, Las Vegas, NV,
2004
.
23.
C. J.
Rom
,
M. H.
Anderson
, and
M. J.
Chiaverini
, “
Cold flow analysis of a vortex chamber engine for gelled propellant combustor applications
,” AIAA Paper No. 2004–3359, Fort Lauderdale, FL,
2004
.
24.
G. H.
Vatistas
,
A. M.
Jawarneh
, and
H.
Hong
, “
Flow characteristics in a vortex chamber
,”
Can. J. Chem. Eng.
83
,
425
(
2005
).
25.
M. J.
Chiaverini
,
M. J.
Malecki
,
J. A.
Sauer
, and
W. H.
Knuth
, “
Vortex combustion chamber development for future liquid rocket engine applications
,” AIAA Paper No. 2002–2149, Indianapolis, IN,
2002
.
26.
P. W.
Gloyer
,
W. H.
Knuth
, and
J.
Goodman
, “
Overview of initial research into the effects of strong vortex flow on hybrid rocket combustion and performance
,”
CSTAR Fifth Annual Symposium N96–16953
, Tullahoma, TN,
1993
.
27.
W. H.
Knuth
,
M. J.
Chiaverini
,
J. A.
Sauer
, and
D. J.
Gramer
, “
Solid-fuel regression rate behavior of vortex hybrid rocket engines
,”
J. Propul. Power
18
,
600
(
2002
).
28.
I.
Matveev
,
S.
Matveeva
, and
S.
Serbin
, “
Design and preliminary test results of the plasma assisted tornado combustor
,” AIAA Paper No. 2007–5628, Cincinnati, OH,
2007
.
29.
A. B.
Vyas
and
J.
Majdalani
, “
Exact solution of the bidirectional vortex
,”
AIAA J.
44
,
2208
(
2006
).
30.
J.
Majdalani
and
S. W.
Rienstra
, “
On the bidirectional vortex and other similarity solutions in spherical coordinates
,”
Z. Angew. Math. Phys.
58
,
289
(
2007
).
31.
J.
Majdalani
, “
Exact Eulerian solutions of the cylindrical bidirectional vortex
,” AIAA Paper No. 2009–5307, Denver, CO,
2009
.
32.
S.
Balachandar
,
J. D.
Buckmaster
, and
M.
Short
, “
The generation of axial vorticity in solid-propellant rocket-motor flows
,”
J. Fluid Mech.
429
,
283
(
2001
).
33.
M. I. G.
Bloor
and
D. B.
Ingham
, “
The flow in industrial cyclones
,”
J. Fluid Mech.
178
,
507
(
1987
).
34.
R. D.
Sullivan
, “
A two-cell vortex solution of the Navier–Stokes equations
,”
J. Aerosp. Sci.
26
,
767
(
1959
).
35.
A.
Erdélyi
,
Asymptotic Expansions
(
Dover
,
New York
,
1956
).
36.
J. H.
Faler
and
S.
Leibovich
, “
An experimental map of the internal structure of a vortex breakdown
,”
J. Fluid Mech.
86
,
313
(
1978
).
37.
M. P.
Escudier
,
J.
Bornstein
, and
N.
Zehnder
, “
Observations and LDA measurements of confined turbulent vortex flow
,”
J. Fluid Mech.
98
,
49
(
1980
).
38.
G. H.
Vatistas
, “
Simple model for turbulent tip vortices
,”
J. Aircr.
43
,
1577
(
2006
).
39.
C. J.
Rom
, “
Flow field and near nozzle fuel spray characterizations for a cold flowing vortex engine
,” M.S. dissertation,
University of Wisconsin
,
2006
.
40.
M. H.
Anderson
,
R.
Valenzuela
,
C. J.
Rom
,
R.
Bonazza
, and
M. J.
Chiaverini
, “
Vortex chamber flow field characterization for gelled propellant combustor applications
,” AIAA Paper No. 2003–4474, Huntsville, AL,
2003
.
41.
B. A.
Maicke
and
J.
Majdalani
, “
A constant shear stress core flow model of the bidirectional vortex
,”
Proc. R. Soc. London, Ser. A
465
,
915
(
2009
).
42.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
National Bureau of Standards
,
New York
,
1964
).
43.
F.
Chang
and
V. K.
Dhir
, “
Mechanisms of heat transfer enhancement and slow decay of swirl in tubes with tangential injection
,”
Int. J. Heat Fluid Flow
16
,
78
(
1995
).
44.
M. J.
Chiaverini
,
M. J.
Malecki
,
J. A.
Sauer
,
W. H.
Knuth
, and
J.
Majdalani
, “
Vortex thrust chamber testing and analysis for O2-H2 propulsion applications
,” AIAA Paper No. 2003–4473, Huntsville, AL,
2003
.
45.
J. W.
Batterson
and
J.
Majdalani
, “
On the boundary layers of the bidirectional vortex
,” AIAA Paper No. 2007–4123, Miami, FL,
2007
.
You do not currently have access to this content.