The effects of intra- and intersubject variabilities in airway geometry on airflow in the human lungs are investigated by large eddy simulation. The airway models of two human subjects consisting of extra- and intrathoracic airways are reconstructed from CT images. For intrasubject study, airflows at two inspiratory flow rates are simulated on the airway geometries of the same subject with four different levels of truncation. These airway models are the original complete geometry and three geometries obtained by truncating the original one at the subglottis, the supraglottis, and the laryngopharynx, respectively. A comparison of the airflows in the complete geometry model shows that the characteristics of the turbulent laryngeal jet in the trachea are similar regardless of Reynolds number in terms of mean velocities, turbulence statistics, coherent structures, and pressure distribution. The truncated airway models, however, do not produce the similar flow structures observed in the complete geometry. An improved inlet boundary condition is then proposed for the airway model truncated at the laryngopharynx to improve the accuracy of solution. The new boundary condition significantly improves the mean flow. The spectral analysis shows that turbulent characteristics are captured downstream away from the glottis. For intersubject study, although the overall flow characteristics are similar, two morphological factors are found to significantly affect the flows between subjects. These are the constriction ratio of the glottis with respect to the trachea and the curvature and shape of the airways.

1.
E. R.
Weibel
,
Morphometry of the Human Lung
(
Academic
,
New York
,
1963
).
2.
K.
Horsfield
,
G.
Dart
,
D. E.
Olson
,
G. F.
Filley
, and
G.
Cumming
, “
Models of the human bronchial tree
,”
J. Appl. Physiol.
31
,
207
(
1971
).
3.
J. K.
Comer
,
C.
Kleinstreuer
, and
Z.
Zhang
, “
Flow structures and particle deposition patterns in double-bifurcation airway models: Part 1. Airflow fields
,”
J. Fluid Mech.
435
,
25
(
2001
).
4.
J. K.
Comer
,
C.
Kleinstreuer
, and
Z.
Zhang
, “
Flow structures and particle deposition patterns in double-bifurcation airway models: Part 2. Aerosol transport and deposition
,”
J. Fluid Mech.
435
,
55
(
2001
).
5.
N.
Nowak
,
P. P.
Kakade
, and
A. V.
Annapragada
, “
Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs
,”
Ann. Biomed. Eng.
31
,
374
(
2003
).
6.
Z.
Zhang
and
C.
Kleinstreuer
, “
Transient airflow structures and particle transport in a sequentially branching lung airway model
,”
Phys. Fluids
14
,
862
(
2002
).
7.
Z.
Zhang
and
C.
Kleinstreuer
, “
Airflow structures and nano-particle deposition in a human upper airway model
,”
J. Comput. Phys.
198
,
178
(
2004
).
8.
C.
van Ertbruggen
,
C.
Hirsch
, and
M.
Paiva
, “
Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics
,”
J. Appl. Physiol.
98
,
970
(
2005
).
9.
E. A.
Hoffman
,
A. V.
Clough
,
G. E.
Christensen
,
C.
Lin
,
G.
McLennan
,
J. M.
Reinhardt
,
B. A.
Simon
,
M.
Sonka
,
M. H.
Tawhai
,
E. J. R.
van Beek
, and
G.
Wang
, “
The comprehensive imaging-based analysis of the lung: A forum for team science
,”
Acad. Radiol.
11
,
1370
(
2004
).
10.
G. M.
Allen
,
B. P.
Shortall
,
T.
Gemci
,
T. E.
Corcoran
, and
N. A.
Chigier
, “
Computational simulations of airflow in an in vitro model of the pediatric upper airways
,”
J. Biomech. Eng.
126
,
604
(
2004
).
11.
B.
Ma
and
K. R.
Lutchen
, “
An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics
,”
Ann. Biomed. Eng.
34
,
1691
(
2006
).
12.
M.
Brouns
,
S. T.
Jayaraju
,
C.
Lacor
,
J.
De Mey
,
M.
Noppen
,
W.
Vincken
, and
S.
Verbanck
, “
Tracheal stenosis: A flow dynamics study
,”
J. Appl. Physiol.
102
,
1178
(
2007
).
13.
M. H.
Tawhai
,
P.
Hunter
,
J.
Tschirren
,
J.
Reinhardt
,
G.
McLennan
, and
E. A.
Hoffman
, “
CT-based geometry analysis and finite element models of the human and ovine bronchial tree
,”
J. Appl. Physiol.
97
,
2310
(
2004
).
14.
A. S.
Menon
,
M. E.
Weber
, and
H. K.
Chang
, “
Effect of the larynx on oscillatory flow in the central airways: a model study
,”
J. Appl. Physiol.
59
,
160
(
1985
).
15.
T. B.
Martonen
,
Y.
Yang
, and
Z. Q.
Xue
, “
Effects of carinal ridge shapes on lung airstreams
,”
Aerosol Sci. Technol.
21
,
119
(
1994
).
16.
Y.
Zhang
and
W.
Finlay
, “
Measurement of the effect of cartilaginous rings on particle deposition in a proximal lung bifurcation model
,”
Aerosol Sci. Technol.
39
,
394
(
2005
).
17.
C. -L.
Lin
,
M. H.
Tawhai
,
G.
McLennan
, and
E. A.
Hoffman
, “
Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
,”
Respir. Physiol. Neurobiol.
157
,
295
(
2007
).
18.
L.
de Rochefort
,
L.
Vial
,
R.
Fodil
,
X.
Maitre
,
B.
Louis
,
D.
Isabey
,
G.
Caillibotte
,
M.
Thiriet
,
J.
Bittoun
,
E.
Durand
, and
G.
Sbirlea-Apiou
, “
In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry
,”
J. Appl. Physiol.
102
,
2012
(
2007
).
19.
A. F.
Heenan
,
E.
Matida
,
A.
Pollard
, and
W. H.
Finlay
, “
Experimental measurements and computational modeling of the flow field in an idealized human oropharynx
,”
Exp. Fluids
35
,
70
(
2003
).
20.
J. B.
West
and
P.
Hugh-Jones
, “
Patterns of gas flow in the upper bronchial tree
,”
J. Appl. Physiol.
14
,
753
(
1959
).
21.
T.
Sera
,
S.
Satoh
,
H.
Horinouchi
,
K.
Kobayashi
, and
K.
Tanishita
, “
Respiratory flow in a realistic tracheostenosis model
,”
J. Biomech. Eng.
125
,
461
(
2003
).
22.
A. S.
Green
, “
Modelling of peak-flow wall shear stress in major airways of the lung
,”
J. Biomech.
37
,
661
(
2004
).
23.
K.
Adler
and
C.
Brücker
, “
Dynamic flow in a realistic model of the upper human lung airways
,”
Exp. Fluids
43
,
411
(
2007
).
24.
T. B.
Martonen
,
L.
Quan
,
Z.
Zhang
, and
C. J.
Musante
, “
Flow simulation in the human upper respiratory tract
,”
Cell Biochem. Biophys.
37
,
27
(
2002
).
25.
D. F.
Proctor
, “
The upper airways. II. The larynx and trachea
,”
Am. Rev. Respir. Dis.
115
,
315
(
1977
).
26.
K. W.
Stapleton
,
E.
Guentsch
,
M. K.
Hoskinson
, and
W. H.
Finlay
, “
On the suitability of k-ε turbulence modeling for aerosol deposition in the mouth and throat
,”
J. Aerosol Sci.
31
,
739
(
2000
).
27.
J.
Tschirren
,
E. A.
Hoffman
,
G.
McLennan
, and
M.
Sonka
, “
Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans
,”
IEEE Trans. Med. Imaging
24
,
1529
(
2005
).
28.
J.
Tschirren
,
G.
McLennan
,
K.
Palagyi
,
E. A.
Hoffman
, and
M.
Sonka
, “
Matching and anatomical labeling of human airway tree
,”
IEEE Trans. Med. Imaging
24
,
1540
(
2005
).
29.
K.
Palagyi
,
J.
Tschirren
,
E. A.
Hoffman
, and
M.
Sonka
, “
Quantitative analysis of pulmonary airway tree structures
,”
Comput. Biol. Med.
36
,
974
(
2006
).
30.
M.
Lesieur
and
O.
Metais
, “
New trends in large-eddy simulations of turbulence
,”
Annu. Rev. Fluid Mech.
28
,
45
(
1996
).
31.
C. -L.
Lin
,
H.
Lee
,
T.
Lee
, and
L. J.
Weber
, “
A level set characteristic Galerkin finite element method for free surface flows
,”
Int. J. Numer. Methods Fluids
49
,
521
(
2005
).
32.
T.
Lee
,
C. -L.
Lin
, and
C. A.
Friehe
, “
Large-eddy simulation of air flow around a wall-mounted circular cylinder and a tripod tower
,”
J. Turbul.
8
,
1
(
2007
).
33.
A. W.
Vreman
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
,
3670
(
2004
).
34.
N.
Park
,
S.
Lee
,
J.
Lee
, and
H.
Choi
, “
A dynamic subgrid-scale eddy viscosity model with a global model coefficient
,”
Phys. Fluids
18
,
125109
(
2006
).
35.
D.
You
and
P.
Moin
, “
A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries
,”
Phys. Fluids
19
,
065110
(
2007
).
36.
P.
Moin
and
J.
Kim
, “
Numerical investigation of turbulent channel flow
,”
J. Fluid Mech.
118
,
341
(
1982
).
37.
R.
Mittal
,
S. P.
Simmons
, and
F.
Najjar
, “
Numerical study of pulsatile flow in a constricted channel
,”
J. Fluid Mech.
485
,
337
(
2003
).
38.
P. E.
Dimotakis
, “
Turbulent mixing
,”
Annu. Rev. Fluid Mech.
37
,
329
(
2005
).
39.
H.
Hu
,
T.
Saga
,
T.
Kobayashi
, and
N.
Taniguchi
, “
A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique
,”
Phys. Fluids
13
,
3425
(
2001
).
40.
J. T. C.
Liu
, “
Coherent structures in transitional and turbulent free shear flows
,”
Annu. Rev. Fluid Mech.
21
,
285
(
1989
).
41.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems, and Symmetry
(
Cambridge University Press
,
Cambridge
,
1996
).
42.
L. R.
Pastur
,
F.
Lusseyran
,
Y.
Fraigneau
, and
B.
Podvin
, “
Determining the spectral signature of spatial coherent structures in an open cavity flow
,”
Phys. Rev. E
72
,
065301
(
2005
).
43.
C.
Rowley
and
D. R.
Williams
, “
Dynamics and control of high-Reynolds-number flow over open cavities
,”
Annu. Rev. Fluid Mech.
38
,
251
(
2006
).
44.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
45.
A.
Johnstone
,
M.
Uddin
,
A.
Pollard
,
A.
Heenan
, and
W. H.
Finlay
, “
The flow inside an idealised form of the human extra-thoracic airway
,”
Exp. Fluids
37
,
673
(
2004
).
46.
C. -L.
Lin
,
M. H.
Tawhai
,
G.
McLennan
, and
E. A.
Hoffman
, “
Computational fluid dynamics
,”
IEEE Eng. Med. Biol. Mag.
28
,
25
(
2009
).
47.
D. L.
Jan
,
A. H.
Shapiro
, and
R. D.
Kamm
, “
Some features of oscillatory flow in a model bifurcation
,”
J. Appl. Physiol.
67
,
147
(
1989
).
48.
T. J.
Pedley
and
R. D.
Kamm
, in
The Lung: Scientific Foundations
, 2nd ed., edited by
R. G.
Crystal
and
J. B.
West
(
Raven
,
New York
,
1997
), Vol.
1
, Chap. 99, p.
1365
.
49.
Q.
Zhang
and
H.
Johari
, “
Effects of acceleration on turbulent jets
,”
Phys. Fluids
8
,
2185
(
1996
).
50.
B.
Grgic
,
A. R.
Martin
, and
W. H.
Finlay
, “
The effect of unsteady flow rate increase on in vitro mouth-throat deposition of inhaled boluses
,”
J. Aerosol Sci.
37
,
1222
(
2006
).
51.
H. H.
Jin
,
J. R.
Fan
,
M. J.
Zeng
, and
K. F.
Cen
, “
Large eddy simulation of inhaled particle deposition within the human upper respiratory tract
,”
J. Aerosol Sci.
38
,
257
(
2007
).
52.
S. J.
Kwon
and
I. W.
Seo
, “
Reynolds number effects on the behavior of a non-buoyant round jet
,”
Exp. Fluids
38
,
801
(
2005
).
53.
G.
Malmstrom
,
A. T.
Kirkpatrick
,
B.
Christensen
, and
K. D.
Knappmiller
, “
Centreline velocity decay measurements in low-velocity axisymmetric jets
,”
J. Fluid Mech.
346
,
363
(
1997
).
54.
C.
Bogey
and
C.
Bailly
, “
Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation
,”
Phys. Fluids
18
,
065101
(
2006
).
55.
S. A.
Ahmed
and
D. P.
Giddens
, “
Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers
,”
J. Biomech.
16
,
505
(
1983
).
56.
S. S.
Varghese
,
S. H.
Frankel
, and
P. F.
Fischer
, “
Direct numerical simulation of stenotic flows. Part 1. Steady flow
,”
J. Fluid Mech.
582
,
253
(
2007
).
57.
P. E.
Dimotakis
,
R. C.
Miake-Lye
, and
D. A.
Papantoniou
, “
Structure and dynamics of round turbulent jets
,”
Phys. Fluids
26
,
3185
(
1983
).
58.
D.
Liepmann
, “
Streamwise vorticity and entrainment in the near field of a round jet
,”
Phys. Fluids A
3
,
1179
(
1991
).
59.
S. A.
Naib
and
J.
Sanders
, “
Oblique and vertical jet dispersion in channels
,”
J. Hydrol. Eng.
123
,
456
(
1997
).
60.
P. E.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
(
2000
).
61.
P. C.
Babu
and
K.
Mahesh
, “
Upstream entrainment in numerical simulations of spatially evolving round jets
,”
Phys. Fluids
16
,
3699
(
2004
).
62.
B.
Podvin
,
Y.
Fraigneau
,
F.
Lusseyran
, and
P.
Gougat
, “
A Reconstruction method for the flow past an open cavity
,”
ASME Trans. J. Fluids Eng.
128
,
531
(
2006
).
63.
W. S.
Saric
, “
Gőrtler vortices
,”
Annu. Rev. Fluid Mech.
26
,
379
(
1994
).
64.
P. G.
Drazin
, in
Hydrodynamic Stability
, edited by
W. H.
Reid
(
Cambridge University Press
,
Cambridge
,
2004
).
65.
W. H.
Finlay
and
K.
Nandakumar
, “
Onset of two-dimensional cellular flow in finite curved channels of large aspect ratio
,”
Phys. Fluids A
2
,
1163
(
1990
).
66.
V. C.
Patel
and
F.
Sotiropoulos
, “
Longitudinal curvature effects in turbulent boundary layers
,”
Prog. Aerosp. Sci.
33
,
1
(
1997
).
67.
M.
Nagata
and
N.
Kasagi
, “
Spatio-temporal evolution of coherent vortices in wall turbulence with streamwise curvature
,”
J. Turbul.
5
,
1
(
2004
).
68.
G. K.
El Khoury
,
H. I.
Andersson
, and
B.
Pettersen
, “
Simulating turbulent Dean flow in Cartesian coordinates
,”
Int. J. Numer. Methods Fluids
60
,
263
(
2009
).
69.
J.
Vétel
,
A.
Garon
,
D.
Pelletier
, and
M.
Farinas
, “
Asymmetry and transition to turbulence in a smooth axisymmetric constriction
,”
J. Fluid Mech.
607
,
351
(
2008
).
70.
B. M.
Kim
and
W. H.
Corcoran
, “
Experimental measurements of turbulence spectra distal to stenoses
,”
J. Biomech.
7
,
335
(
1974
).
71.
P. C.
Lu
,
D. R.
Gross
, and
N. H. C.
Hwang
, “
Intravascular pressure and velocity fluctuations in pulmonic arterial stenosis
,”
J. Biomech.
13
,
291
(
1980
).
72.
T. J.
Pedley
,
R. C.
Schroter
, and
M. F.
Sudlow
, “
Energy losses and pressure drop in models of human airways
,”
Respir. Physiol.
9
,
371
(
1970
).
73.
Y.
Zhang
and
W. H.
Finlay
, “
Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat
,”
J. Aerosol Med.
18
,
460
(
2005
).
You do not currently have access to this content.