A general method for the derivation of asymptotic nonlinear models in shallow and deep water is presented. Starting from a general dimensionless version of the water wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet–Neumann operator and we show that many asymptotic models can be recovered by a simple analysis of this operator. Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to an uneven bottom the approach developed by Matsuno [Phys. Rev. E47, 4593 (1993)] and Choi [J. Fluid Mech.295, 381 (1995)]. This model is still valid in shallow water but with less precision than what can be achieved with the Green–Naghdi model when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equations with the fully nonlinear shallow water Green–Naghdi equations represents a relevant model for describing ocean wave propagation from deep to shallow waters.

1.
Y.
Matsuno
, “
Two-dimensional evolution of surface gravity waves on a fluid of arbitrary depth
,”
Phys. Rev. E
47
,
4593
(
1993
).
2.
J.
Boussinesq
, “
Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond
,”
J. Math. Pures Appl.
17
,
55
(
1872
).
3.
P. A.
Madsen
and
H. A.
Schäffer
, “
A review of Boussinesq-type equations for gravity waves
,” in
Advances in Coastal and Ocean Engineering
, edited by
P. L.-F.
Liu
(
World Scientific
,
Singapore
,
1999
), Vol.
5
, pp.
1
94
.
4.
P. A.
Madsen
,
O. R.
Sorensen
, and
H. A.
Schäffer
, “
Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves
,”
Coastal Eng.
32
,
255
(
1997
).
5.
P. A.
Madsen
,
O. R.
Sorensen
, and
H. A.
Schäffer
, “
Surf zone dynamics simulated by a Boussinesq type model. Part II. Surf beat and swash oscillations for wave groups and irregular waves
,”
Coastal Eng.
32
,
289
(
1997
).
6.
R.
Cienfuegos
,
E.
Barthelemy
, and
P.
Bonneton
, “
A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II. Boundary conditions and model validation
,”
Int. J. Numer. Methods Fluids
53
,
1423
(
2007
).
7.
D. G.
Korteweg
and
G.
de Vries
, “
On the change of form of long waves advancing in the rectangular canal and a new type of long stationary waves
,”
Philos. Mag.
39
,
422
(
1895
).
8.
T. B.
Benjamin
,
J. L.
Bona
, and
J. J.
Mahony
, “
Model equations for long waves in nonlinear dispersive systems
,”
Philos. Trans. R. Soc. London, Ser. A
272
,
47
(
1972
).
9.
T. B.
Benjamin
, “
The stability of solitary waves
,”
Philos. Trans. R. Soc. London, Ser. A
328
,
153
(
1972
).
10.
M. W.
Dingemans
, “
Water wave propagation over uneven bottoms
,”
Non-Linear Wave Propagation
(
World Scientific
,
Singapore
,
1997
), Vol.
13
, Pt. 2, p.
473
.
11.
T. Y.
Wu
, “
A unified theory for modeling water waves
,”
Adv. Appl. Mech.
37
,
1
(
2001
).
12.
J. T.
Kirby
, “
Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents
,” in
Advances in Coastal Modeling
, edited by
V. C.
Lakhan
(
Elsevier
,
New York
,
2003
), pp.
1
41
.
13.
E.
Barthelemy
, “
Nonlinear shallow water theories for coastal waves
,”
Surv. Geophys.
25
,
315
(
2004
).
14.
D. H.
Peregrine
, “
Long waves on a beach
,”
J. Fluid Mech.
27
,
815
(
1967
).
15.
J. M.
Witting
, “
A unified model for the evolution of nonlinear water waves
,”
J. Comput. Phys.
56
,
203
(
1984
).
16.
P. A.
Madsen
,
R.
Murray
, and
O. R.
Sorensen
, “
A new form of the Boussinesq equations with improved linear dispersion characteristics
,”
Coastal Eng.
15
,
371
(
1991
).
17.
O.
Nwogu
, “
Alternative form of Boussinesq equations for nearshore wave propagations
,”
J. Waterway, Port, Coastal, Ocean Eng.
119
,
618
(
1993
).
18.
H. A.
Schäffer
and
P. A.
Madsen
, “
Further enhancements of Boussinesq-type equations
,”
Coastal Eng.
26
,
1
(
1995
).
19.
J. L.
Bona
,
M.
Chen
, and
J. -C.
Saut
, “
Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory
,”
J. Nonlinear Sci.
12
,
283
(
2002
).
20.
J. L.
Bona
,
T.
Colin
, and
D.
Lannes
, “
Long waves approximations for water waves
,”
Arch. Ration. Mech. Anal.
178
,
373
(
2005
).
21.
C. H.
Su
and
C. S.
Gardner
, “
Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation
,”
J. Math. Phys.
10
,
536
(
1969
).
22.
F. J.
Seabra-Santos
,
D. P.
Renouard
, and
A. M.
Temperville
, “
Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle
,”
J. Fluid Mech.
176
,
117
(
1987
).
23.
R.
Cienfuegos
,
E.
Barthelemy
, and
P.
Bonneton
, “
A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I. Model development and analysis
,”
Int. J. Numer. Methods Fluids
51
,
1217
(
2006
).
24.
A. E.
Green
and
P. M.
Naghdi
, “
A derivation of equations for wave propagation in water of variable depth
,”
J. Fluid Mech.
78
,
237
(
1976
).
25.
G.
Wei
,
J. T.
Kirby
,
S. T.
Grilli
, and
R.
Subramanya
, “
A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves
,”
J. Fluid Mech.
294
,
71
(
1995
).
26.
J.
Miles
and
R.
Salmon
, “
Weakly dispersive nonlinear gravity waves
,”
J. Fluid Mech.
157
,
519
(
1985
).
27.
R. C.
Ertekin
,
W. C.
Webster
, and
J. V.
Wehausen
, “
Waves caused by a moving disturbance in a shallow channel of finite width
,”
J. Fluid Mech.
169
,
275
(
1986
).
28.
Y.
Matsuno
, “
Nonlinear evolutions of surface gravity waves on fluid of finite depth
,”
Phys. Rev. Lett.
69
,
609
(
1992
).
29.
Y.
Matsuno
, “
Nonlinear evolution of surface gravity waves over an uneven bottom
,”
J. Fluid Mech.
249
,
121
(
1993
).
30.
W.
Choi
, “
Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth
,”
J. Fluid Mech.
295
,
381
(
1995
).
31.
B.
Alvarez-Samaniego
and
D.
Lannes
, “
Large time existence for 3D water waves and asymptotics
,”
Invent. Math.
171
,
485
(
2008
).
32.
V. E.
Zakharov
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
2
,
190
(
1968
).
33.
W.
Craig
,
C.
Sulem
, and
P. -L.
Sulem
, “
Nonlinear modulation of gravity waves: a rigorous approach
,”
Nonlinearity
5
,
497
(
1992
).
34.
F.
Serre
, “
Contribution à l’étude des écoulements permanents et variables dans les canaux
,”
Houille Blanche
8
,
374
(
1953
).
35.
D. D.
Holm
, “
Hamiltonian structure for two-dimensional hydrodynamics with nonlinear dispersion
,”
Phys. Fluids
31
,
2371
(
1988
).
36.
R.
Camassa
,
D. D.
Holm
, and
C. D.
Levermore
, “
Long-time effects of bottom topography in shallow water
,”
Physica D
98
,
258
(
1996
).
37.
R.
Camassa
and
D. D.
Holm
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
,
1661
(
1993
).
38.
R.
Camassa
,
D. D.
Holm
, and
J. M.
Hyman
, “
A new integrable shallow water equation
,”
Adv. Appl. Mech.
31
,
1
(
1994
).
39.
R. S.
Johnson
, “
Camassa-Holm, Korteweg-de Vries and related models for water waves
,”
J. Fluid Mech.
455
,
63
(
2002
).
40.
A.
Constantin
and
D.
Lannes
, “
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations
,”
Arch. Ration. Mech. Anal.
(in press).
41.
D.
Lannes
and
J. -C.
Saut
, “
Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation
,”
Nonlinearity
19
,
2853
(
2006
).
42.
L.
Brevdo
, “
Hamiltonian long-wave expansions for water waves over a rough bottom
,”
Proc. R. Soc. London, Ser. A
461
,
1
(
2005
).
43.
W.
Craig
,
U.
Schanz
, and
C.
Sulem
, “
The modulational regime of three-dimensional water waves and the Davey-Stewartson system
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
14
,
615
(
1997
).
44.
D.
Lannes
, “
Well-posedness of the water-wave equations
,”
J. Am. Math. Soc.
18
,
605
(
2005
).
45.
R. A.
Smith
, “
An operator expansion formalism for nonlinear surface waves over variable depth
,”
J. Fluid Mech.
363
,
333
(
1998
).
46.
Y.
Agnon
,
P. A.
Madsen
, and
H. A.
Schäffer
, “
A new approach to high order Boussinesq models
,”
J. Fluid Mech.
399
,
319
(
1999
).
47.
P. A.
Madsen
,
H. B.
Bingham
, and
H. A.
Schäffer
, “
Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis
,”
Proc. R. Soc. London, Ser. A
459
,
1075
(
2003
).
48.
P. A.
Madsen
,
H. B.
Bingham
, and
H.
Liu
, “
A new Boussinesq method for fully nonlinear waves from shallow to deep water
,”
J. Fluid Mech.
462
,
1
(
2002
).
49.
P. A.
Madsen
,
D. R.
Fuhrman
, and
B.
Wang
, “
A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry
,”
Coastal Eng.
53
,
487
(
2006
).
You do not currently have access to this content.