The effect of rotation is considered to become important when the Rossby number is sufficiently small, as is the case in many geophysical and astrophysical flows. Here we present direct numerical simulations to study the effect of rotation in flows with moderate Rossby numbers (down to Ro0.03) but at Reynolds numbers large enough to observe the beginning of a turbulent scaling at scales smaller than the energy injection scale. We use coherent forcing at intermediate scales, leaving enough room in the spectral space for an inverse cascade of energy to also develop. We analyze the spectral behavior of the simulations, the shell-to-shell energy transfer, scaling laws and intermittency, as well as the geometry and the anisotropy of the structures in the flow. At late times, the direct transfer of energy at small scales is mediated by interactions with the largest scale in the system, the energy containing eddies with k1, where refers to wavevectors perpendicular the axis of rotation. The transfer between modes with wavevector parallel to the rotation is strongly quenched. The inverse cascade of energy at scales larger than the energy injection scale is nonlocal, and energy is transferred directly from small scales to the largest available scale. We observe both a direct and inverse cascade of energy at high rotation rate, indicative that these cascades can take place simultaneously. Also, as time evolves and the energy piles up at the large scales, the intermittency of the direct cascade of energy is preserved while corrections due to intermittency are found to be the same (within error bars) as in homogeneous nonrotating turbulence.

1.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer
,
Berlin
,
1986
).
2.
M. S.
Miesch
,
J. R.
Elliott
,
J. T. T. L.
Clune
,
G. A.
Glatzmaier
, and
P. A.
Gilman
, “
Three-dimensional spherical simulations of solar convection. I. Differential rotation and pattern evolution achieved with laminar and turbulent states
,”
Astrophys. J.
532
,
593
(
2000
).
3.
H. P.
Greenspan
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
Cambridge
,
1968
).
4.
F.
Waleffe
, “
Inertial transfers in the helical decomposition
,”
Phys. Fluids A
5
,
677
(
1993
).
5.
C.
Cambon
and
L.
Jacquin
, “
Spectral approach to non-isotropic turbulence subjected to rotation
,”
J. Fluid Mech.
202
,
295
(
1989
).
6.
C.
Cambon
,
N. N.
Mansour
, and
F. S.
Godeferd
, “
Energy transfer in rotating turbulence
,”
J. Fluid Mech.
337
,
303
(
1997
).
7.
S.
Galtier
, “
Weak inertial-wave turbulence theory
,”
Phys. Rev. E
68
,
015301
(
2003
).
8.
P. F.
Embid
and
A.
Majda
, “
Averaging over fast gravity waves for geophysics flows with arbitrary potential vorticity
,”
Commun. Partial Differ. Equ.
21
,
619
(
1996
).
9.
A.
Babin
,
A.
Mahalov
, and
B.
Nicolaenko
, “
Global splitting, integrability and regularity of three-dimensional Euler and Navier-Stokes equations for uniformly rotating fluids
,”
Eur. J. Mech. B/Fluids
15
,
291
(
1996
).
10.
F.
Bellet
,
F. S.
Godeferd
,
J. F.
Scott
, and
C.
Cambon
, “
Wave turbulence in rapidly rotating flows
,”
J. Fluid Mech.
562
,
83
(
2006
).
11.
L. M.
Smith
and
Y.
Lee
, “
On near resonances and symmetry breaking in forced rotating flows at moderate rossby number
,”
J. Fluid Mech.
535
,
111
(
2005
).
12.
P. J.
Staplehurst
,
P. A.
Davidson
, and
S. B.
Dalziel
, “
Structure formation in homogeneous freely decaying rotating turbulence
,”
J. Fluid Mech.
598
,
81
(
2008
).
13.
L. J. A.
van Bokhoven
,
C.
Cambon
,
L.
Liechtenstein
,
F. S.
Godeferd
, and
H. J. H.
Clercx
, “
Refined vorticity statistics of decaying rotating three-dimensional turbulence
,”
J. Turbul.
9
,
N6
(
2008
).
14.
O.
Zeman
, “
A note on the spectra and decay of rotating homogeneous turbulence
,”
Phys. Fluids
6
,
3221
(
1994
).
15.
Y.
Zhou
, “
A phenomenological treatment of rotating turbulence
,”
Phys. Fluids
7
,
2092
(
1995
).
16.
V. M.
Canuto
and
M. S.
Dubovikov
, “
A dynamical model for turbulence. V. The effect of rotation
,”
Phys. Fluids
9
,
2132
(
1997
).
17.
W. -C.
Müller
and
M.
Thiele
, “
Scaling and energy transfer in rotating turbulence
,”
Europhys. Lett.
77
,
34003
(
2007
).
18.
J.
Bardina
,
J. H.
Ferziger
, and
R. S.
Rogallo
, “
Effect of rotation on isotropic turbulence: computation and modeling
,”
J. Fluid Mech.
154
,
321
(
1985
).
19.
M.
Hossain
, “
Reduction in the dimensionality of turbulence due to a strong rotation
,”
Phys. Fluids
6
,
1077
(
1994
).
20.
P.
Bartello
,
O.
Métais
, and
M.
Lesieur
, “
Coherent structures in rotating three-dimensional turbulence
,”
J. Fluid Mech.
273
,
1
(
1994
).
21.
L. M.
Smith
,
J. R.
Chasnov
, and
F.
Waleffe
, “
Crossover from two-to three-dimensional turbulence
,”
Phys. Rev. Lett.
77
,
2467
(
1996
).
22.
L. M.
Smith
and
F.
Waleffe
, “
Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence
,”
Phys. Fluids
11
,
1608
(
1999
).
23.
P. K.
Yeung
and
Y.
Zhou
, “
Numerical study of rotating turbulence with external forcing
,”
Phys. Fluids
10
,
2895
(
1998
).
24.
Q.
Chen
,
S.
Chen
,
G. L.
Eyink
, and
D.
Holm
, “
Resonant interactions in rotating homogeneous three-dimensional turbulence
,”
J. Fluid Mech.
542
,
139
(
2005
).
25.
P.
Sagaut
and
C.
Cambon
,
Homogeneous Turbulence Dynamics
(
Cambridge University Press
,
Cambridge
,
2008
).
26.
G. I.
Taylor
and
A. E.
Green
, “
Mechanism of the production of small eddies from large ones
,”
Proc. R. Soc. London, Ser. A
158
,
499
(
1937
).
27.
R. H.
Morf
,
S. A.
Orszag
, and
U.
Frisch
, “
Spontaneous singularity in three-dimensional, inviscid, incompressible flow
,”
Phys. Rev. Lett.
44
,
572
(
1980
).
28.
C.
Simand
,
F.
Chillà
, and
J. F.
-
Pinton
, “
Study of inhomogeneous turbulence in the closed flow between corotating disks
,”
Europhys. Lett.
49
,
336
(
2000
).
29.
R.
Monchaux
,
M.
Berhanu
,
M.
Bourgoin
,
M.
Moulin
,
Ph.
Odier
,
J. -F.
Pinton
,
R.
Volk
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
C.
Gasquet
,
L.
Marié
, and
F.
Ravelet
, “
Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium
,”
Phys. Rev. Lett.
98
,
044502
(
2007
).
30.
A.
Alexakis
,
P. D.
Mininni
, and
A.
Pouquet
, “
Shell-to-shell energy transfer in magnetohydrodynamics. I. steady state turbulence
,”
Phys. Rev. E
72
,
046301
(
2005
).
31.
P. D.
Mininni
,
A.
Alexakis
, and
A.
Pouquet
, “
Shell-to-shell energy transfer in magnetohydrodynamics. II. kinematic dynamo
,”
Phys. Rev. E
72
,
046302
(
2005
).
32.
A.
Alexakis
,
P. D.
Mininni
, and
A.
Pouquet
, “
Imprint of large-scale flows on turbulence
,”
Phys. Rev. Lett.
95
,
264503
(
2005
).
33.
P. D.
Mininni
,
A.
Alexakis
, and
A.
Pouquet
, “
Large-scale flow effects, energy transfer, and self-similarity on turbulence
,”
Phys. Rev. E
74
,
016303
(
2006
).
34.
A.
Alexakis
,
B.
Bigot
,
H.
Politano
, and
S.
Galtier
, “
Anisotropic fluxes and nonlocal interactions in magnetohydrodynamic turbulence
,”
Phys. Rev. E
76
,
056313
(
2007
).
35.
J. A.
Domaradzki
, “
Analysis of energy transfer in direct numerical simulations of isotropic turbulence
,”
Phys. Fluids
31
,
2747
(
1988
).
36.
J. A.
Domaradzki
and
R. S.
Rogallo
, “
Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence
,”
Phys. Fluids A
2
,
413
(
1990
).
37.
P. D.
Mininni
,
A.
Alexakis
, and
A.
Pouquet
, “
Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws
,”
Phys. Rev. E
77
,
036306
(
2008
).
38.
A.
Alexakis
,
P. D.
Mininni
, and
A.
Pouquet
, “
On the inverse cascade of magnetic helicity
,”
Astrophys. J.
640
,
335
(
2006
).
39.
A.
Alexakis
,
P. D.
Mininni
, and
A.
Pouquet
, “
Turbulent cascades, transfer, and scale interactions in magnetohydrodynamics
,”
New J. Phys.
9
,
298
(
2007
).
40.
J. C.
McWilliams
, “
The emergence of isolated coherent vortices in turbulent flow
,”
J. Fluid Mech.
146
,
21
(
1984
).
41.
M. E.
Brachet
,
M.
Meneguzzi
, and
P. L.
Sulem
, “
Small-scale dynamics of high-Reynolds-number two-dimensional turbulence
,”
Phys. Rev. Lett.
57
,
683
(
1986
).
42.
A.
Babiano
,
C.
Basdevant
,
B.
Legras
, and
R.
Sadourny
, “
Vorticity and passive-scalar dynamics in two-dimensional turbulence
,”
J. Fluid Mech.
183
,
379
(
1987
).
43.
R.
Benzi
,
S.
Patarnello
, and
P.
Santangelo
, “
On the statistical properties of two-dimensional decaying turbulence
,”
Europhys. Lett.
3
,
811
(
1987
).
44.
M. E.
Maltrud
and
G. K.
Vallis
, “
Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence
,”
J. Fluid Mech.
228
,
321
(
1991
).
45.
U.
Frisch
,
Turbulence: The Legacy of A.N. Kolmogorov
(
Cambridge University Press
,
Cambridge
,
1995
).
46.
P. D.
Mininni
and
A.
Pouquet
, “
Energy spectra stemming from interactions of Alfvén waves and turbulent eddies
,”
Phys. Rev. Lett.
99
,
254502
(
2007
).
47.
P. S.
Iroshnikov
, “
Turbulence of a conducting fluid in a strong magnetic field
,”
Sov. Astron.
7
,
566
(
1963
).
48.
R. H.
Kraichnan
, “
Inertial-range spectrum of hydromagnetic turbulence
,”
Phys. Fluids
8
,
1385
(
1965
).
49.
Z. S.
She
and
E.
Lévêque
, “
Universal scaling laws in fully developed turbulence
,”
Phys. Rev. Lett.
72
,
336
(
1994
).
50.
L.
Jacquin
,
O.
Leuchter
,
C.
Cambon
, and
J.
Mathieu
, “
Homogeneous turbulence in the presence of rotation
,”
J. Fluid Mech.
220
,
1
(
1990
).
51.
J. V.
Shebalin
,
W. H.
Matthaeus
, and
D.
Montgomery
, “
Anisotropy in MHD turbulence due to a mean magnetic field
,”
J. Plasma Phys.
29
,
525
(
1983
).
52.
L. J.
Milano
,
W. H.
Matthaeus
,
P.
Dmitruk
, and
D. C.
Montgomery
, “
Local anisotropy in incompressible magnetohydrodynamic turbulence
,”
Phys. Plasmas
8
,
2673
(
2001
).
53.
L.
Liechtenstein
,
F. S.
Godeferd
, and
C.
Cambon
, “
Nonlinear formation of structures in rotating stratified turbulence
,”
J. Turbul.
6
,
1
(
2005
).
54.
Y.
Morinishi
,
K.
Nakabayashi
, and
S.
Ren
, “
Dynamics of anisotropy on decaying homogeneous turbulence subjected to system rotation
,”
Phys. Fluids
13
,
2912
(
2001
).
55.
X.
Yang
and
J. A.
Domaradzki
, “
LES of decaying rotating turbulence
,”
Phys. Fluids
16
,
4088
(
2004
).
56.
R.
Benzi
and
R.
Scardovelli
, “
Intermittency of two-dimensional decaying turbulence
,”
Europhys. Lett.
29
,
371
(
1995
).
57.
G.
Boffetta
, “
Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence
,”
J. Fluid Mech.
589
,
253
(
2007
).
58.
P.
Charbonneau
, “
Multiperiodicity, chaos, and intermittency in a reduced model of the solar cycle
,”
Sol. Phys.
199
,
385
(
2001
).
59.
P. D.
Mininni
,
D. O.
Gómez
, and
G. B.
Mindlin
, “
Biorthogonal decomposition techniques unveil the nature of the irregularities observed in the solar cycle
,”
Phys. Rev. Lett.
89
,
061101
(
2002
).
60.
J. R.
Kulkarni
,
L. K.
Sadani
, and
B. S.
Murthy
, “
Wavelet analysis of intermittent turbulent transport in the atmospheric surface layer over a monsoon trough region
,”
Boundary-Layer Meteorol.
90
,
217
(
1999
).
61.
J.
Clyne
,
P.
Mininni
,
A.
Norton
, and
M.
Rast
, “
Interactive desktop analysis of high resolution simulations: Application to turbulent plume dynamics and current sheet formation
,”
New J. Phys.
9
,
301
(
2007
).
You do not currently have access to this content.