A novel, stochastic, hybrid binomial Langevin-multiple mapping conditioning (MMC) model—that utilizes the strengths of each component—has been developed for inhomogeneous flows. The implementation has the advantage of naturally incorporating velocity-scalar interactions through the binomial Langevin model and using this joint probability density function (PDF) to define a reference variable for the MMC part of the model. The approach has the advantage that the difficulties encountered with the binomial Langevin model in modeling scalars with nonelementary bounds are removed. The formulation of the closure leads to locality in scalar space and permits the use of simple approaches (e.g., the modified Curl’s model) for transport in the reference space. The overall closure was evaluated through application to a chemically reacting mixing layer. The results show encouraging comparisons with experimental data for the first two moments of the PDF and plausible results for higher moments at a relatively modest computational cost.

1.
S. T.
Smith
and
R. O.
Fox
, “
A term-by-term Direct Numerical Simulation validation study of the multi-environment conditional probability-density-function model for turbulent reacting flows
,”
Phys. Fluids
19
,
085102
(
2007
).
2.
B.
Merci
,
B.
Naud
, and
D.
Roekaerts
, “
Impact of turbulent flow and mean mixture fraction results on mixing model behavior in transported scalar PDF simulations of turbulent non-premixed bluff body flames
,”
Flow, Turbul. Combust.
79
,
41
(
2007
).
3.
R. P.
Lindstedt
,
S. A.
Louloudi
,
J. J.
Driscoll
, and
V.
Sick
, “
Finite rate chemistry effects in turbulent reacting flows
,”
Flow, Turbul. Combust.
72
,
407
(
2004
).
4.
Z.
Ren
and
S. B.
Pope
, “
An investigation of the performance of turbulent mixing models
,”
Combust. Flame
136
,
208
(
2004
).
5.
A. Y.
Klimenko
and
S. B.
Pope
, “
A model for turbulent reactive flows based on Multiple Mapping Conditioning
,”
Phys. Fluids
15
,
1907
(
2003
).
6.
L.
Valiño
and
C.
Dopazo
, “
A binomial Langevin model for turbulent mixing
,”
Phys. Fluids A
3
,
3034
(
1991
).
7.
A. P.
Wandel
, “
Development of Multiple Mapping Conditioning (MMC) for application to turbulent combustion
,” Ph.D. thesis, The University of Queensland,
2005
.
8.
M. J.
Cleary
and
A.
Kronenburg
, “
Multiple mapping conditioning for extinction and reignition in turbulent diffusion flames
,”
Proc. Combust. Inst.
31
,
1497
(
2007
).
9.
M. J.
Cleary
and
A.
Kronenburg
, “
‘Hybrid’ multiple mapping conditioning on passive and reactive scalars
,”
Combust. Flame
151
,
623
(
2007
).
10.
K.
Vogiatzaki
,
A.
Kronenburg
,
M. J.
Cleary
, and
J. H.
Kent
, “
Multiple mapping conditioning of turbulent jet diffusion flames
,”
Proc. Combust. Inst.
32
,
1679
(
2009
).
11.
A. P.
Wandel
and
A. Y.
Klimenko
, “
Multiple mapping conditioning applied to homogeneous turbulent combustion
,”
Phys. Fluids
17
,
128105
(
2005
).
12.
T.
Hůlek
and
R. P.
Lindstedt
, “
Joint scalar-velocity pdf modelling of finite rate chemistry in a scalar mixing layer
,”
Combust. Sci. Technol.
136
,
303
(
1998
).
13.
E. R.
Hawkes
,
R.
Sankaran
,
J. C.
Sutherland
, and
J. H.
Chen
, “
Scalar mixing in Direct Numerical Simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics
,”
Proc. Combust. Inst.
31
,
1633
(
2007
).
14.
R. P.
Lindstedt
,
H. C.
Ozarovsky
,
R. S.
Barlow
, and
A. N.
Karpetis
, “
Progression of localized extinction in high Reynolds number turbulent jet flames
,”
Proc. Combust. Inst.
31
,
1551
(
2007
).
15.
S.
Mitarai
,
J. J.
Riley
, and
G.
Kosály
, “
Testing of mixing models for Monte–Carlo PDF simulations
,”
Phys. Fluids
17
,
047101
(
2005
).
16.
S.
Mitarai
,
J. J.
Riley
, and
G.
Kosály
, “
A Lagrangian study of scalar diffusion in isotropic turbulence with chemical reaction
,”
Phys. Fluids
15
,
3856
(
2003
).
17.
S.
Subramaniam
and
S. B.
Pope
, “
A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees
,”
Combust. Flame
115
,
487
(
1998
).
18.
A. Y.
Klimenko
, “
On simulating scalar transport by mixing between Lagrangian particles
,”
Phys. Fluids
19
,
031702
(
2007
).
19.
C.
Dopazo
, “
Relaxation of initial probability density functions in the turbulent convection of scalar fields
,”
Phys. Fluids
22
,
20
(
1979
).
20.
J.
Janicka
,
W.
Kolbe
, and
W.
Kollmann
, “
Closure of the transport equation for the probability density function of turbulent scalar fields
,”
J. Non-Equilib. Thermodyn.
4
,
47
(
1979
).
21.
S. B.
Pope
, “
Mapping closures for turbulent mixing and reaction
,”
Theor. Comput. Fluid Dyn.
2
,
255
(
1991
).
22.
H.
Chen
,
S.
Chen
, and
R. H.
Kraichnan
, “
Probability distribution of a stochastically advected scalar field
,”
Phys. Rev. Lett.
63
,
2657
(
1989
).
23.
J. C.
Song
, “
A velocity-biased turbulent mixing model for passive scalars in homogeneous turbulence
,”
Phys. Fluids
30
,
2046
(
1987
).
24.
R. O.
Fox
, “
On velocity-conditioned scalar mixing in homogeneous turbulence
,”
Phys. Fluids
8
,
2678
(
1996
).
25.
A. Y.
Klimenko
and
R. W.
Bilger
, “
Conditional moment closure for turbulent combustion
,”
Prog. Energy Combust. Sci.
25
,
595
(
1999
).
26.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, England
,
2000
).
27.
L. R.
Saetran
,
D. R.
Honnery
,
S. H.
Stårner
, and
R. W.
Bilger
,
Turbulent Shear Flows 6
(
Springer-Verlag
,
Berlin
,
1989
), pp.
109
118
.
28.
R. W.
Bilger
,
L. R.
Saetran
, and
L. V.
Krishnamoorthy
, “
Reaction in a scalar mixing layer
,”
J. Fluid Mech.
233
,
211
(
1991
).
29.
J. D.
Li
and
R. W.
Bilger
, “
Measurement and prediction of the conditional variance in a turbulent reactive-scalar mixing layer
,”
Phys. Fluids A
5
,
3255
(
1993
).
30.
A. Y.
Klimenko
, “
MMC modelling and fluctuations of the scalar dissipation
,” in
Proceedings of 2003 Australian Symposium on Combustion and The Eighth Australian Flame Days
(
Monash University Printing Services
,
Clayton, Victoria
,
2003
), p.
P020
.
31.
S. B.
Pope
, “
Accessed compositions in turbulent reactive flows
,”
Flow, Turbul. Combust.
72
,
219
(
2004
).
32.
J.
Villermaux
and
J. -C.
Devillon
, “
Representation of the coalescence and the redispersion of the fields of segregation in a fluid by a model of phenomenologic interaction
,” in
Chemical Reaction Engineering: Proceedings of the Fifth European/Second International Symposium on Chemical Reaction Engineering
(
Elsevier
,
New York
,
1972
), pp.
B1
13
B1
24
.
33.
C.
Dopazo
and
E. E.
O’Brien
, “
An approach to the autoignition of a turbulent mixture
,”
Acta Astronaut.
1
,
1239
(
1974
).
You do not currently have access to this content.