We examine the effects of capillarity and gravity in a model of one-dimensional imbibition of an incompressible liquid into a deformable porous material. We focus primarily on a capillary rise problem but also discuss a capillary/gravitational drainage configuration in which capillary and gravity forces act in the same direction. Models in both cases can be formulated as nonlinear free-boundary problems. In the capillary rise problem, we identify time-dependent solutions numerically and compare them in the long time limit to analytically obtain equilibrium or steady state solutions. A basic feature of the capillary rise model is that, after an early time regime governed by zero gravity dynamics, the liquid rises to a finite, equilibrium height and the porous material deforms into an equilibrium configuration. We explore the details of these solutions and their dependence on system parameters such as the capillary pressure and the solid to liquid density ratio. We quantify both net, or global, deformation of the material and local deformation that may occur even in the case of zero net deformation. In the model for the draining problem, we identify numerical solutions that quantify the effects of gravity, capillarity, and solid to liquid density ratio on the time required for a finite volume of fluid to drain into the deformable porous material. In the  Appendix, experiments on capillary rise of water into a deformable sponge are described and the measured capillary rise height and sponge deformation are compared with the theoretical predictions. For early times, the experimental data and theoretical predictions for these interface dynamics are in general agreement. On the other hand, the long time equilibrium predicted theoretically is not observed in our experimental data.

1.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
(
1921
).
2.
B. V.
Zhmud
,
F.
Tiberg
, and
K.
Hallstensson
, “
Dynamic of capillary rise
,”
J. Colloid Interface Sci.
228
,
263
(
2000
).
3.
T.
Delker
,
D. B.
Pengra
, and
P.
Wong
, “
Interface pinning and the dynamics of capillary rise in porous media
,”
Phys. Rev. Lett.
76
,
2902
(
1996
).
4.
M.
Lago
and
M.
Araujo
, “
Capillary rise in porous media
,”
J. Colloid Interface Sci.
234
,
35
(
2001
);
[PubMed]
M.
Lago
and
M.
Araujo
, “
Capillary rise in porous media
,”
Physica A
289
1
(
2001
).
5.
S. H.
Davis
and
L. M.
Hocking
, “
Spreading and imbibition of viscous liquid on a porous base
,”
Phys. Fluids
11
,
48
(
1999
).
6.
S. H.
Davis
and
L. M.
Hocking
, “
Spreading and imbibition of viscous liquid on a porous base. II
,”
Phys. Fluids
12
,
1646
(
2000
).
7.
M.
Spiegelman
, “
Flow in deformable porous media. Part 1. Simple analysis
,”
J. Fluid Mech.
247
,
17
(
1993
).
8.
M.
Kaczmarek
and
T.
Hueckel
, “
Chemico-mechanical consolidation of clays: Analytical solutions for a linearized one-dimensional problem
,”
Transp. Porous Media
32
,
49
(
1998
).
9.
M.
Kaczmarek
, “
Chemically induced deformation of a porous layer coupled with advective-dispersive transport. Analytical solutions
,”
Int. J. Numer. Analyt. Meth. Geomech.
25
,
757
(
2001
).
10.
G. P.
Peters
and
D. W.
Smith
, “
Solute transport through a deforming porous medium
,”
Int. J. Numer. Analyt. Meth. Geomech.
26
,
683
(
2002
).
11.
J. L.
Sommer
and
A.
Mortensen
, “
Forced unidirectional infiltration of deformable porous media
,”
J. Fluid Mech.
311
,
193
(
1996
).
12.
L.
Preziosi
,
D. D.
Joseph
, and
G. S.
Beavers
, “
Infiltration of initially dry, deformable porous media
,”
Int. J. Multiphase Flow
22
,
1205
(
1996
).
13.
V. J.
Michaud
,
J. L.
Sommer
, and
A.
Mortensen
, “
Infiltration of fibrous performs by a pure metal: Part V. Influence of preform compressibility
,”
Metall. Mater. Trans. A
30
,
471
(
1999
).
14.
D.
Ambrosi
and
L.
Preziosi
, “
Modeling injection modeling processes with deformable porous preforms
,”
SIAM J. Appl. Math.
61
,
22
(
2000
).
15.
L.
Billi
and
A.
Farina
, “
Unidirectional infiltration in deformable porous media: Mathematical modeling and self-similar solution
,”
Q. Appl. Math.
58
,
85
(
2000
).
16.
J.
Feng
and
S.
Weinbaum
, “
Lubrication theory in highly compressible porous media: The mechanics of skiing, from red cells to humans
,”
J. Fluid Mech.
422
,
281
(
2000
).
17.
K. S. A.
Chen
and
L. E.
Scriven
, “
Liquid penetration into a deformable porous substrate
,”
Tappi J.
73
,
151
(
1990
).
18.
A. D.
Fitt
,
P. D.
Howell
,
J. R.
King
,
C. P.
Please
, and
D. W.
Schwendeman
, “
Multiphase flow in a roll press nip
,”
Eur. J. Appl. Math.
13
,
225
(
2002
).
19.
M. H.
Holmes
, “
A nonlinear diffusion equation arising in the study of soft tissue
,”
Q. Appl. Math.
41
,
209
(
1983
).
20.
M. H.
Holmes
, “
Comparison theorems and similarity solution approximations for a nonlinear diffusion equation arising in the study of soft tissue
,”
SIAM J. Appl. Math.
44
,
545
(
1984
).
21.
M. H.
Holmes
, “
A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment
,”
Bull. Math. Biol.
47
,
669
(
1985
).
22.
M. H.
Holmes
, “
Finite deformation of soft tissue: Analysis of a mixture model in uniaxial compression
,”
J. Biomech. Eng.
108
,
372
(
1986
).
23.
M. H.
Holmes
and
V. C.
Mow
, “
The nonlinear characteristic of soft gels and hydrated connective tissue in ultrafiltration
,”
J. Biomech.
23
,
1145
(
1990
).
24.
J. S.
Hou
,
M. H.
Holmes
,
W. M.
Lai
, and
V. C.
Mow
, “
Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications
,”
J. Biomech. Eng.
111
,
78
(
1989
).
25.
S. I.
Barry
and
G. K.
Aldis
, “
Radial flow through deformable porous shells
,”
J. Aust. Math. Soc. Ser. B, Appl. Math.
34
,
333
(
1993
).
26.
S. I.
Barry
and
G. K.
Aldis
, “
Flow induced deformation from pressurized cavities in absorbing porous tissues
,”
Bull. Math. Biol.
54
,
977
(
1992
).
27.
S. I.
Barry
,
K. H.
Parker
, and
G. K.
Aldis
, “
Fluid flow over a thin deformable porous layer
,”
J. Appl. Math. Phys. (ZAMP)
42
,
633
(
1991
).
28.
M. A.
Biot
, “
General theory of three dimensional consolidation
,”
J. Appl. Phys.
12
,
155
(
1941
).
29.
M. A.
Biot
, “
Consolidation settlement under a rectangular load distribution
,”
J. Appl. Phys.
12
,
426
(
1941
).
30.
M. A.
Biot
and
F. M.
Clingan
, “
Consolidation settlement of a soil with an impervious top surface
,”
J. Appl. Phys.
12
,
578
(
1941
).
31.
M. R.
Bowen
, “
Incompressible porous media models by use of the theory of mixtures
,”
Int. J. Eng. Sci.
18
,
1129
(
1980
).
32.
R. J.
Atkin
and
R. E.
Crain
, “
Continuum theories of mixture: Basic theory and historical development
,”
Q. J. Mech. Appl. Math.
29
,
209
(
1976
).
33.
W.
Wang
and
K. H.
Parker
, “
The effect of deformable porous surface layers on the motion of a sphere in a narrow cylindrical tube
,”
J. Fluid Mech.
283
,
287
(
1995
).
34.
D. M.
Anderson
, “
Imbibition of a liquid droplet on a deformable porous substrate
,”
Phys. Fluids
17
,
087104
(
2005
).
35.
S.
Manley
,
J. M.
Skotheim
,
L.
Mahadevan
, and
D. A.
Weitz
, “
Gravitational collapse of colloidal gels
,”
Phys. Rev. Lett.
94
,
218302
(
2005
).
36.
C.
Kim
,
Y.
Liu
,
A.
Kühnle
,
S.
Hess
,
S.
Viereck
,
T.
Danner
,
L.
Mahadevan
, and
D. A.
Weitz
, “
Gravitational stability of suspensions of attractive colloidal particles
,”
Phys. Rev. Lett.
99
,
028303
(
2007
).
37.
E. R.
Dufresne
,
E. I.
Corwin
,
N. A.
Greenblatt
,
J.
Ashmore
,
D. Y.
Wang
,
A. D.
Dinsmore
,
J. X.
Cheng
,
X. S.
Xie
,
J. W.
Hutchinson
, and
D. A.
Weitz
, “
Flow and fracture in drying nanoparticle suspensions
,”
Phys. Rev. Lett.
91
,
224501
(
2003
).
38.
E. R.
Dufresne
,
D. J.
Stark
,
N. A.
Greenblatt
,
J. X.
Cheng
,
J. W.
Hutchinson
,
L.
Mahadevan
, and
D. A.
Weitz
, “
Dynamics of fracture in drying suspensions
,”
Langmuir
22
,
7144
(
2006
).
39.
G. S.
Beavers
,
K.
Wittenberg
, and
E. M.
Sparrow
, “
Fluid flow through a class of highly-deformable porous media. Part II. Experiments with water
,”
J. Fluids Eng.
103
,
440
(
1981
).
40.
K. H.
Parker
,
R. V.
Mehta
, and
C. G.
Caro
, “
Steady flow in porous, elastically deformable materials
,”
J. Appl. Mech.
54
,
794
(
1987
).
41.
Y.
Lanir
,
S.
Sauob
, and
P.
Maretsky
, “
Nonlinear finite deformation response of open cell polyurethane sponge to fluid filtration
,”
J. Appl. Mech.
57
,
449
(
1990
).
42.
D. A.
Lockington
and
J.-Y.
Parlange
, “
A new equation for macroscopic description of capillary rise in porous media
,”
J. Colloid Interface Sci.
278
,
404
(
2004
).
You do not currently have access to this content.