Motivated by recent experiments on the hovering of passive bodies, we demonstrate how a simple shape-changing body can hover or ascend in an oscillating background flow. We study this ratcheting effect through numerical simulations of the two-dimensional Navier–Stokes equations at intermediate Reynolds number. This effect could describe a viable means of locomotion or transport in such environments as a tidal pool with wave-driven sloshing. We also consider the velocity burst achieved by a body through a rapid increase in its aspect ratio, which may contribute to the escape dynamics of such organisms as jellyfish.
REFERENCES
1.
M.
Cloupeau
, J. F.
Devillers
, and D.
Devezeaux
, “Direct measurements of instantaneous lift in desert locust: comparison with Jensen’s experiments on detached wings
,” J. Exp. Biol.
80
, 1
(1979
).2.
P. J.
Wilkin
and M. H.
Williams
, “Comparison of the instantaneous aerodynamic forces on a sphingid moth with those predicted by quasi-steady aerodynamic theory
,” Physiol. Zool.
66
, 1015
(1993
).3.
J. Z.
Wang
, “The role of drag in insect hovering
,” J. Exp. Biol.
207
, 4147
(2004
).4.
J. Z.
Wang
, “Dissecting insect flight
,” Annu. Rev. Fluid Mech.
37
, 183
(2005
).5.
G.
Houghton
, “The behaviour of particles in a sinusoidal velocity field
,” Proc. R. Soc. London, Ser. A
272
, 33
(1963
).6.
M. H. I.
Baird
, M. G.
Senior
, and R. J.
Thompson
, “Terminal velocities of spherical particles in a vertically oscillating liquid
,” Chem. Eng. Sci.
22
, 551
(1967
).7.
E. B.
Tunstall
and G.
Houghton
, “Retardation of falling spheres by hydrodynamic oscillations
,” Chem. Eng. Sci.
23
, 1067
(1968
).8.
R. M.
Van Oeveren
and G.
Houghton
, “Levitation and counter-gravity motion of spheres by non-uniform hydrodynamic oscillations
,” Chem. Eng. Sci.
26
, 1958
(1971
).9.
L.
Boyadzhiev
, “On the movement of a spherical particle in vertically oscillating liquid
,” J. Fluid Mech.
57
, 545
(1973
).10.
P. G.
Saffman
, “The self-propulsion of a deformable body in a perfect fluid
,” J. Fluid Mech.
28
, 385
(1967
).11.
S.
Childress
, N.
Vandenberghe
, and J.
Zhang
, “Hovering of a passive body in an oscillating airflow
,” Phys. Fluids
18
, 117103
(2006
).12.
W.
E
and J. -G.
Liu
, “Essentially compact schemes for unsteady viscous incompressible flows
,” J. Comp. Physiol.
126
, 122
(1996
).13.
U.
Pesavento
and J.
Wang
, “Falling paper: Navier–Stokes solutions, model of fluid forces, and center of mass elevation
,” Phys. Rev. Lett.
93
, 144501
(2004
).14.
S.
Alben
and M.
Shelley
, “Coherent locomotion as an attracting state for a free flapping body
,” Proc. Natl. Acad. Sci. U.S.A.
102
, 11163
(2005
).15.
J. F.
Thompson
, Z. U. A.
Warsi
, and C. W.
Mastin
, Numerical Grid Generation
(Elsevier Science
, New York
, 1985
).16.
S. E.
Spagnolie
, “Flapping, ratcheting, bursting, and tumbling: A selection of problems in fluid-body interaction dynamics
,” Ph.D. thesis, New York University
, 2008
.17.
A.
Roshko
, “Experiments on the flow past a circular cylinder at very high Reynolds number
,” J. Fluid Mech.
10
, 345
(1961
).18.
M.
Braza
, P.
Chassaing
, and H. Ha
Minh
, “Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder
,” J. Fluid Mech.
165
, 79
(1986
).19.
W.
Briley
, “Numerical study of laminar separation bubbles using Navier–Stokes equations
,” J. Fluid Mech.
47
, 713
(1971
).20.
W.
E
and J.
Liu
, “Vorticity boundary conditions and related issues for finite difference schemes
,” J. Comput. Phys.
124
, 368
(1996
).21.
Y.
Saad
and M. H.
Schultz
, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
7
, 859
(1986
).22.
R.
Barrett
, M.
Berry
, T. F.
Chan
, J.
Demmel
, J.
Donato
, J.
Dongarra
, V.
Eijkhout
, R.
Pozo
, C.
Romine
, and H.
Van der Vorst
, Templates for the Solutions of Linear Systems: Building Blocks for Iterative Methods
, 2nd ed. (SIAM
, Philadelphia
, 1994
).23.
G. K.
Batchelor
, An Introduction to Fluid Dynamics
(Cambridge University Press
, Cambridge
, 1967
).24.
25.
N. E.
Kochin
, I. A.
Kibel
, and N. V.
Rose
, Theoretical Hydromechanics
(Interscience
, New York
, 1964
).26.
T. L.
Daniel
, “Unsteady aspects of aquatic locomotion
,” Am. Zool.
24
, 121
(1984
).27.
T. L.
Daniel
, “Cost of locomotion: Unsteady medusan swimming
,” J. Exp. Biol.
119
, 149
(1985
).28.
P. W.
Webb
, “Simple physical principles and vertebrate aquatic locomotion
,” Am. Zool.
28
, 709
(1988
).29.
S. P.
Colin
and J. H.
Costello
, “Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae
,” J. Exp. Biol.
205
, 427
(2002
).30.
M. J.
McHenry
and J.
Jed
, “The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita)
,” J. Exp. Biol.
206
, 4125
(2003
).31.
J. O.
Dabiri
and M.
Gharib
, “Sensitivity analysis of kinematic approximations in dynamic medusan swimming models
,” J. Exp. Biol.
206
, 3675
(2003
).32.
S.
Donaldson
and G. O.
Mackie
, “Preliminary observations on escape swimming and giant neurons in Aglantha digitale (Hydromedusae: Trachylina)
,” Can. J. Zool.
58
, 549
(1980
).33.
S.
Childress
, personal communication (2008
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.