Motivated by recent experiments on the hovering of passive bodies, we demonstrate how a simple shape-changing body can hover or ascend in an oscillating background flow. We study this ratcheting effect through numerical simulations of the two-dimensional Navier–Stokes equations at intermediate Reynolds number. This effect could describe a viable means of locomotion or transport in such environments as a tidal pool with wave-driven sloshing. We also consider the velocity burst achieved by a body through a rapid increase in its aspect ratio, which may contribute to the escape dynamics of such organisms as jellyfish.

1.
M.
Cloupeau
,
J. F.
Devillers
, and
D.
Devezeaux
, “
Direct measurements of instantaneous lift in desert locust: comparison with Jensen’s experiments on detached wings
,”
J. Exp. Biol.
80
,
1
(
1979
).
2.
P. J.
Wilkin
and
M. H.
Williams
, “
Comparison of the instantaneous aerodynamic forces on a sphingid moth with those predicted by quasi-steady aerodynamic theory
,”
Physiol. Zool.
66
,
1015
(
1993
).
3.
J. Z.
Wang
, “
The role of drag in insect hovering
,”
J. Exp. Biol.
207
,
4147
(
2004
).
4.
J. Z.
Wang
, “
Dissecting insect flight
,”
Annu. Rev. Fluid Mech.
37
,
183
(
2005
).
5.
G.
Houghton
, “
The behaviour of particles in a sinusoidal velocity field
,”
Proc. R. Soc. London, Ser. A
272
,
33
(
1963
).
6.
M. H. I.
Baird
,
M. G.
Senior
, and
R. J.
Thompson
, “
Terminal velocities of spherical particles in a vertically oscillating liquid
,”
Chem. Eng. Sci.
22
,
551
(
1967
).
7.
E. B.
Tunstall
and
G.
Houghton
, “
Retardation of falling spheres by hydrodynamic oscillations
,”
Chem. Eng. Sci.
23
,
1067
(
1968
).
8.
R. M.
Van Oeveren
and
G.
Houghton
, “
Levitation and counter-gravity motion of spheres by non-uniform hydrodynamic oscillations
,”
Chem. Eng. Sci.
26
,
1958
(
1971
).
9.
L.
Boyadzhiev
, “
On the movement of a spherical particle in vertically oscillating liquid
,”
J. Fluid Mech.
57
,
545
(
1973
).
10.
P. G.
Saffman
, “
The self-propulsion of a deformable body in a perfect fluid
,”
J. Fluid Mech.
28
,
385
(
1967
).
11.
S.
Childress
,
N.
Vandenberghe
, and
J.
Zhang
, “
Hovering of a passive body in an oscillating airflow
,”
Phys. Fluids
18
,
117103
(
2006
).
12.
W.
E
and
J. -G.
Liu
, “
Essentially compact schemes for unsteady viscous incompressible flows
,”
J. Comp. Physiol.
126
,
122
(
1996
).
13.
U.
Pesavento
and
J.
Wang
, “
Falling paper: Navier–Stokes solutions, model of fluid forces, and center of mass elevation
,”
Phys. Rev. Lett.
93
,
144501
(
2004
).
14.
S.
Alben
and
M.
Shelley
, “
Coherent locomotion as an attracting state for a free flapping body
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
11163
(
2005
).
15.
J. F.
Thompson
,
Z. U. A.
Warsi
, and
C. W.
Mastin
,
Numerical Grid Generation
(
Elsevier Science
,
New York
,
1985
).
16.
S. E.
Spagnolie
, “
Flapping, ratcheting, bursting, and tumbling: A selection of problems in fluid-body interaction dynamics
,” Ph.D. thesis,
New York University
,
2008
.
17.
A.
Roshko
, “
Experiments on the flow past a circular cylinder at very high Reynolds number
,”
J. Fluid Mech.
10
,
345
(
1961
).
18.
M.
Braza
,
P.
Chassaing
, and
H. Ha
Minh
, “
Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder
,”
J. Fluid Mech.
165
,
79
(
1986
).
19.
W.
Briley
, “
Numerical study of laminar separation bubbles using Navier–Stokes equations
,”
J. Fluid Mech.
47
,
713
(
1971
).
20.
W.
E
and
J.
Liu
, “
Vorticity boundary conditions and related issues for finite difference schemes
,”
J. Comput. Phys.
124
,
368
(
1996
).
21.
Y.
Saad
and
M. H.
Schultz
, “
GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
7
,
859
(
1986
).
22.
R.
Barrett
,
M.
Berry
,
T. F.
Chan
,
J.
Demmel
,
J.
Donato
,
J.
Dongarra
,
V.
Eijkhout
,
R.
Pozo
,
C.
Romine
, and
H.
Van der Vorst
,
Templates for the Solutions of Linear Systems: Building Blocks for Iterative Methods
, 2nd ed. (
SIAM
,
Philadelphia
,
1994
).
23.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
).
24.
C.
Yih
,
Fluid Mechanics
(
McGraw-Hill
,
New York
,
1969
).
25.
N. E.
Kochin
,
I. A.
Kibel
, and
N. V.
Rose
,
Theoretical Hydromechanics
(
Interscience
,
New York
,
1964
).
26.
T. L.
Daniel
, “
Unsteady aspects of aquatic locomotion
,”
Am. Zool.
24
,
121
(
1984
).
27.
T. L.
Daniel
, “
Cost of locomotion: Unsteady medusan swimming
,”
J. Exp. Biol.
119
,
149
(
1985
).
28.
P. W.
Webb
, “
Simple physical principles and vertebrate aquatic locomotion
,”
Am. Zool.
28
,
709
(
1988
).
29.
S. P.
Colin
and
J. H.
Costello
, “
Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae
,”
J. Exp. Biol.
205
,
427
(
2002
).
30.
M. J.
McHenry
and
J.
Jed
, “
The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita)
,”
J. Exp. Biol.
206
,
4125
(
2003
).
31.
J. O.
Dabiri
and
M.
Gharib
, “
Sensitivity analysis of kinematic approximations in dynamic medusan swimming models
,”
J. Exp. Biol.
206
,
3675
(
2003
).
32.
S.
Donaldson
and
G. O.
Mackie
, “
Preliminary observations on escape swimming and giant neurons in Aglantha digitale (Hydromedusae: Trachylina)
,”
Can. J. Zool.
58
,
549
(
1980
).
33.
S.
Childress
, personal communication (
2008
).
You do not currently have access to this content.