A three-dimensional linear instability analysis is carried out for a double infinitely, incompressible, and viscous compound jet moving in an inviscid surrounding gas. An analytical form of dispersion relation is derived and then solved by a direct numerical procedure. A detailed parametric study is performed to explore the instability mechanisms that cause the growth of nonaxisymmetric disturbances in compound jets. The results show that the Weber number defined on the outer interface between the ambient gas and the shell-liquid layer and the gas-to-shell density ratio both have significant influences on the growth of nonaxisymmetric instability modes, whereas the other parameters including the radius ratio, the core-to-shell density ratio, the Reynolds numbers, and the Weber number defined on the inner interface are relatively less important to the onset of the nonaxisymmetric modes. Particularly, it is found that the nonaxisymmetric sinuous mode may prevail over the axisymmetric mode for a compound jet operating at high Weber number but with low Reynolds number. The instability characteristics exhibit that the aerodynamic drag is the dominant mechanism resulting in the onset of nonaxisymmetric instability in compound jets. The present results complement the existing axisymmetric investigations and give a more complete theoretical understanding for the instability behaviors of compound jets.

1.
C. H.
Hertz
and
B.
Hermanrud
, “
A liquid compound jet
,”
J. Fluid Mech.
131
,
271
(
1983
).
2.
A.
Chauhan
,
C.
Maldarelli
,
D. T.
Papageorgiou
, and
D. S.
Rumschitzki
, “
Temporal instability of compound threads and jets
,”
J. Fluid Mech.
420
,
1
(
2000
).
3.
J.
Franjione
and
N.
Vasishtha
, “
The art and science of microencapsulation
,” Technology Today, Southwest Research Institute,
1995
, http://www.swri.org/3pubs/ttoday/summer95/microeng.htm.
4.
I. G.
Loscertales
,
A.
Barrero
,
I.
Guerrero
,
R.
Cortijo
,
M.
Marquez
, and
A. M.
Ganan-Calvo
, “
Micro/Nano encapsulation via electrified coaxial liquid jets
,”
Science
295
,
1695
(
2002
).
5.
A.
Chauhan
,
C.
Maldarelli
, and
D. S.
Rumschitzki
, “
Temporal and spatial instability of an inviscid compound jet
,”
Rheol. Acta
35
,
567
(
1996
).
6.
A.
Chauhan
,
C.
Maldarelli
,
D. T.
Papageorgiou
, and
D. S.
Rumschitzki
, “
The absolute instability of an inviscid compound jet
,”
J. Fluid Mech.
549
,
81
(
2006
).
7.
S. P.
Radev
and
P.
Gospodinov
, “
Numerical treatment of the steady flow of a liquid compound jet
,”
Int. J. Multiphase Flow
12
,
997
(
1986
).
8.
S. P.
Radev
and
B.
Tchavdarov
, “
Linear capillary instability of compound jets
,”
Int. J. Multiphase Flow
14
,
67
(
1988
).
9.
A.
Sanz
and
J.
Meseguer
, “
One-dimensional linear analysis of the compound jet
,”
J. Fluid Mech.
159
,
55
(
1985
).
10.
V. Y.
Shkadov
and
G. M.
Sisoev
, “
Instability of a two-layer capillary jet
,”
Int. J. Multiphase Flow
22
,
363
(
1996
).
11.
J. W.
Hoyt
and
J. J.
Taylor
, “
Waves on the water jets
,”
J. Fluid Mech.
83
,
119
(
1977
).
12.
J. W.
Hoyt
and
J. J.
Taylor
, “
Turbulence structure in a water jet discharging in air
,”
Phys. Fluids
20
,
S253
(
1977
).
13.
E.
Avital
, “
Nonaxisymmetric instability of a viscid capillary jet in an inviscid media
,”
Phys. Fluids
7
,
1162
(
1995
).
14.
X.
Li
, “
Mechanism of atomization of a liquid jet
,”
Atomization Sprays
5
,
89
(
1995
).
15.
S. P.
Lin
and
R.
Webb
, “
Nonaxisymmetric evanescent waves in a viscous liquid jet
,”
Phys. Fluids
6
,
2545
(
1994
).
16.
E. A.
Ibrahim
, “
Nonaxisymmetric instability of a viscous liquid jet
,”
J. Colloid Interface Sci.
189
,
181
(
1997
).
17.
A. C.
Ruo
,
M. H.
Chang
, and
F.
Chen
, “
On the nonaxisymmetric instability of round liquid jets
,”
Phys. Fluids
20
,
062105
(
2008
).
18.
F.
Chen
,
J. Y.
Tsaur
,
F.
Durst
, and
S. K.
Das
, “
On the axisymmetry of annular jet instabilities
,”
J. Fluid Mech.
488
,
355
(
2003
).
19.
V. M.
Entov
and
A. L.
Yarin
, “
The dynamics of thin liquid jets in air
,”
J. Fluid Mech.
140
,
91
(
1984
).
20.
J. M.
Gordillo
and
M.
Perez-Saborid
, “
Aerodynamic effects in the break-up of liquid jets: on the first wind-induced break-up regime
,”
J. Fluid Mech.
541
,
1
(
2005
).
21.
A.
Kalaaji
,
B.
Lopez
,
P.
Attane
, and
A.
Soucemarianadin
, “
Breakup length of forced liquid jets
,”
Phys. Fluids
15
,
2469
(
2003
).
22.
A.
Sterling
and
C.
Sleicher
, “
The instability of capillary jets
,”
J. Fluid Mech.
68
,
477
(
1975
).
23.
S.
Castro
and
R.
Bocanegra
, “
Water-based compound Taylor cones held in vacuum: Feasibility and application to colloidal propulsion
,”
Appl. Phys. Lett.
88
,
123105
(
2006
).
24.
S. J.
Leib
and
M. E.
Goldstein
, “
The generation of capillary instabilities on a liquid jet
,”
J. Fluid Mech.
168
,
479
(
1986
).
25.
P. G. D.
Gennes
,
F.
Brochard
, and
D.
Quere
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2004
).
You do not currently have access to this content.