A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices all of the same absolute circulation, displays chaotic scattering regimes. The mechanisms leading to chaotic scattering are different from the “slingshot effect” identified by Price [Phys. Fluids A5, 2479 (1993)] and occur in a different region of the four-vortex phase space. They may, in many cases, be understood by appealing to the solutions of the three-vortex problem obtained by merging two like-signed vortices into one of twice the strength and by assuming that the four-vortex problem has unstable periodic solutions similar to those seen in the thereby associated three-vortex problems. The integrals of motion, linear impulse and Hamiltonian are recast in a form appropriate for vortex pair scattering interactions that provides constraints on the parameters characterizing the outgoing vortex pairs in terms of the initial conditions.

1.
B.
Eckhardt
and
H.
Aref
, “
Integrable and chaotic motions of four vortices II: Collision dynamics of vortex pairs
,”
Philos. Trans. R. Soc. London, Ser. A
326
,
655
(
1988
).
2.
S. V.
Manakov
and
L. N.
Shchur
, “
Stochastic scattering
,”
Sov. Phys. JETP
37
,
54
(
1983
).
3.
H.
Aref
,
J. B.
Kadtke
,
I.
Zawadzki
,
L. J.
Campbell
, and
B.
Eckhardt
, “
Point vortex dynamics: Recent results and open problems
,”
Fluid Dyn. Res.
3
,
63
(
1988
).
4.
G. J. F.
van Heijst
and
J. B.
Flór
, “
Dipole formation and collisions in a stratified fluid
,”
Nature (London)
340
,
212
(
1989
).
5.
O. U.
Velasco Fuentes
and
G. J. F.
van Heijst
, “
Collision of dipolar vortices on the beta plane
,”
Phys. Fluids
7
,
2735
(
1995
).
6.
T.
Price
, “
Chaotic scattering of two identical point vortex pairs
,”
Phys. Fluids A
5
,
2479
(
1993
).
7.
H.
Aref
, “
Motion of three vortices
,”
Phys. Fluids
22
,
393
(
1979
).
8.
N.
Rott
, “
Three-vortex motion with zero total circulation
,”
ZAMP
40
,
473
(
1989
).
9.
H.
Aref
, “
Three-vortex motion with zero total circulation: Addendum
,”
ZAMP
40
,
495
(
1989
).
10.
W.
Gröbli
,
Spezielle Probleme über die Bewegung Geradliniger Paralleler Wirbelfäden
(
Zürcher und Furrer
,
Zürich
,
1877
).
11.
A. E. H.
Love
, “
On the motion of paired vortices with a common axis
,”
Proc. London Math. Soc.
25
,
185
(
1894
).
12.
P. L.
Boyland
,
M. A.
Stremler
, and
H.
Aref
, “
Topological fluid mechanics of point vortex motions
,”
Physica D
175
,
69
(
2003
).
13.
B.
Eckhardt
, “
Integrable four vortex motion
,”
Phys. Fluids
31
,
2796
(
1988
).
14.
H.
Aref
and
M. A.
Stremler
, “
Four-vortex motion with zero total circulation and impulse
,”
Phys. Fluids
11
,
3704
(
1999
).
You do not currently have access to this content.