Flame surface density (FSD) based reaction rate closure is one of the most important approaches in turbulent premixed flame modeling. The algebraic models for FSD based on power laws often require information about the fractal dimension D and the inner cut-off scale ηi. In the present study, two three-dimensional direct numerical simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames are analyzed among which the flame in one case belongs to the corrugated flamelet (CF) regime, whereas the other falls well within the thin reaction zone (TRZ) regime. It is found that D for the flame in the TRZ regime is greater than the value obtained for the flame in the CF regime. For the flame within the TRZ regime, the fractal dimension is found to be 7/3, which is the same as D for a material surface in a turbulent environment. For the flame in the CF regime, ηi is found to scale with the Gibson scale, whereas ηi is found to scale with the Kolmogorov length scale for the flame in the TRZ regime. Based on these observations a new algebraic model for FSD is proposed, where D and ηi are expressed as functions of Karlovitz number. The performances of the new and existing algebraic models for FSD are compared with the corresponding values obtained from DNS databases.

1.
M.
Boger
,
D.
Veynante
,
H.
Boughanem
, and
A.
Trouvé
, “
Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion
,”
Sym. (Int.) Combust., [Proc.]
27
,
917
(
1998
).
2.
F.
Charlette
,
A.
Trouvé
,
M.
Boger
, and
D.
Veynante
, “
A flame surface density model for large eddy simulations of turbulent premixed flames
,”
The Combustion Institute Joint Meeting of the British, German and French Sections
,
Nancy, France
,
1999
.
3.
C.
Angelberger
,
D.
Veynante
,
F.
Egolfopoulos
, and
T.
Poinsot
, “
A flame surface density model for large eddy simulations of turbulent premixed flames
,” in
Proceedings of the Summer Program
(
Center for Turbulence Research
,
Stanford
,
1998
), pp.
66
82
.
4.
E. R.
Hawkes
and
R. S.
Cant
, “
Implications of a flame surface density approach to large eddy simulation of turbulent premixed combustion
,”
Combust. Flame
126
,
1617
(
2001
).
5.
R.
Knikker
,
D.
Veynante
, and
C.
Meneveau
, “
A dynamic flame surface density model for large eddy simulations of turbulent premixed combustion
,”
Phys. Fluids
16
,
L91
(
2004
).
6.
N.
Chakraborty
and
R. S.
Cant
, “
A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation
,”
Phys. Fluids
19
,
105101
(
2007
).
7.
O.
Colin
,
F.
Ducros
,
D.
Veynante
, and
T.
Poinsot
, “
A thickened flame model for large eddy simulations of turbulent premixed combustion
,”
Phys. Fluids
12
,
1843
(
2000
).
8.
F.
Charlette
,
C.
Meneveau
, and
D.
Veynante
, “
A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: Non-dynamic formulation and initial tests
,”
Combust. Flame
131
,
159
(
2002
).
9.
F.
Charlette
,
C.
Meneveau
, and
D.
Veynante
, “
A power-law flame wrinkling model for LES of premixed turbulent combustion. Part II: Dynamic formulation
,”
Combust. Flame
131
,
181
(
2002
).
10.
H. G.
Weller
,
G.
Tabor
,
A. D.
Gosman
, and
C.
Fureby
, “
Application of flame wrinkling LES combustion model to a turbulent mixing layer
,”
Sym. (Int.) Combust., [Proc.]
27
,
899
(
1998
).
11.
C.
Fureby
, “
A fractal flame wrinkling large eddy simulation model for premixed turbulent combustion
,”
Proc. Combust. Inst.
30
,
593
(
2005
).
12.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge, UK
,
2000
), pp.
66
169
.
13.
O.
Gülder
and
G. J.
Smallwood
, “
Inner cutoff scale of flame surface wrinkling in turbulent premixed flames
,”
Combust. Flame
103
,
107
(
1995
).
14.
A.
Kerstein
, “
Fractal dimension of turbulent premixed flames
,”
Combust. Sci. Technol.
60
,
441
(
1988
).
15.
G. L.
North
and
D. A.
Santavicca
, “
The fractal nature of turbulent premixed flames
,”
Combust. Sci. Technol.
72
,
215
(
1990
).
16.
C.
Meneveau
and
T.
Poinsot
, “
Stretching and quenching of flamelets in premixed turbulent combustion
,”
Combust. Flame
86
,
311
(
1991
).
17.
O.
Gülder
, “
Turbulent premixed combustion modelling using fractal geometry
,”
Sym. (Int.) Combust., [Proc.]
23
,
835
(
1990
).
18.
A.
Pocheau
, “
Scale invariance in turbulent front propagation
,”
Phys. Rev. E
49
,
1109
(
1994
).
19.
V. L.
Zimont
and
A.
Lipatnikov
, “
A numerical model of premixed turbulent combustion of gases
,”
Chem. Phys. Rep.
14
,
993
(
1995
).
20.
H.
Pitsch
and
H.
Duchamp de Lageneste
, “
Large-eddy simulation of turbulent premixed combustion using level-set approach
,”
Proc. Combust. Inst.
29
,
2001
(
2002
).
21.
C.
Rutland
and
R. S.
Cant
,
Proceedings of the Summer Program
(
Center for Turbulence Research, NASA, Ames/Stanford University
,
Stanford
,
1994
), pp.
75
94
.
22.
M.
Klein
,
N.
Chakraborty
,
K. W.
Jenkins
, and
R. S.
Cant
, “
Effects of initial radius on the propagation of spherical premixed flame kernels in turbulent environment
,”
Phys. Fluids
18
,
055102
(
2006
).
23.
T.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulation of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
24.
A. A.
Wray
, “
Minimal storage time advancement schemes for spectral methods
,”
NASA Ames Research Center
Report No. MS202 A-1,
1990
.
25.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” NASA Technical Memorandum No. 81315,
NASA Ames Research Center
,
1981
.
26.
F. C.
Gouldin
,
K. N. C.
Bray
, and
J. Y.
Chen
, “
Chemical closure for fractal flamelets
,”
Combust. Flame
77
,
241
(
1989
).
27.
W. L.
Roberts
,
J. F.
Driscoll
,
M. C.
Drake
, and
L. P.
Goss
, “
Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion
,”
Combust. Flame
94
,
58
(
1993
).
28.
J. H.
Chen
and
H. G.
Im
, “
Stretch effects on the burning velocity of turbulent premixed Hydrogen/Air flames
,”
Proc. Combust. Inst.
28
,
211
(
2000
).
29.
N.
Chakraborty
,
M.
Klein
, and
R. S.
Cant
, “
Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime
,”
Proc. Combust. Inst.
31
,
1385
(
2007
).
30.
N.
Peters
,
P.
Terhoeven
,
J. H.
Chen
, and
T.
Echekki
, “
Statistics of flame displacement speeds from computations of 2D unsteady methane-air flames
,”
Sym. (Int.) Combust., [Proc.]
27
,
833
(
1998
).
31.
T.
Echekki
and
J. H.
Chen
, “
Analysis of the contribution of curvature to premixed flame propagation
,”
Combust. Flame
118
,
308
(
1999
).
32.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
, 1st ed. (
Edwards
,
Ann Arbor
,
2001
), pp.
76
79
,
171
268
.
33.
N.
Chakraborty
, “
Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and the thin reaction zones
,”
Phys. Fluids
19
,
105109
(
2007
).
34.
G.
Tabor
and
H. G.
Weller
, “
Large eddy simulation of premixed turbulent combustion using Ξ
flame wrinkling model,”
Flow, Turbul. Combust.
72
,
1
(
2004
).
You do not currently have access to this content.