Surface acoustic wave atomization is a rapid means for generating micron and submicron aerosol droplets. Little, however, is understood about the mechanisms by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory, and simple numerical modeling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Using a millimeter-order fluid drop exposed to surface acoustic waves as it sits atop a single-crystal lithium niobate piezoelectric substrate, large aerosol droplets on the length scale of the parent drop dimension are ejected through a whipping and pinch-off phenomenon, which occurs at the asymmetrically formed crest of the drop due to leakage of acoustic radiation at the Rayleigh angle. Smaller micron order droplets, on the other hand, are formed due to the axisymmetric breakup of cylindrical liquid jets that are ejected as a consequence of interfacial destabilization. The 10μm droplet dimension correlates with the jet radius and the instability wavelength, both determined from a simple scaling argument involving a viscous-capillary dominant force balance. The results are further supported by numerical solution of the evolution equation governing the interfacial profile of a sessile drop along which an acoustic pressure wave is imposed. Viscous and capillary forces dominate in the bulk of the parent drop, but inertia is dominant in the ejected jets and within a thin boundary layer adjacent to the substrate where surface and interfacial accelerations are large. With the specific exception of parent drops that spread into thin films with thicknesses on the order of the boundary layer dimension prior to atomization, the free surface of the drop is always observed to vibrate at the capillary-viscous resonance frequency—even if the exciting frequency of the surface acoustic wave is several orders of magnitude larger—contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation for the capillary wave motion, which has commonly led to erroneous predictions of the droplet size.

1.
O. A.
Basaran
, “
Small-scale free surface flows with breakup: Drop formation and emerging applications
,”
AIChE J.
48
,
1842
(
2002
).
2.
J.
Friend
,
L.
Yeo
,
D.
Arifin
, and
A.
Mechler
, “
Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization
,”
Nanotechnology
19
,
145301
(
2008
).
3.
L. Y.
Yeo
,
Z.
Gagnon
, and
H.-C.
Chang
, “
AC electrospray biomaterials synthesis
,”
Biomaterials
26
,
6122
(
2005
).
4.
A. M.
Gañán-Calvo
, “
Generation of steady liquid microthreads and micron-sized monodispersed sprays in gas streams
,”
Phys. Rev. Lett.
80
,
285
(
1998
).
5.
J. M.
Grace
and
J. C. M.
Marijnissen
, “
A review of liquid atomization by electrical means
,”
J. Aerosol Sci.
25
,
1005
(
1994
).
6.
L. Y.
Yeo
,
D.
Lastochkin
,
S.-C.
Wang
, and
H.-C.
Chang
, “
A new AC electrospray mechanism by Maxwell–Wagner polarization and capillary resonance
,”
Phys. Rev. Lett.
92
,
133902
(
2004
).
7.
R. J.
Lang
, “
Ultrasonic atomization of liquids
,”
J. Acoust. Soc. Am.
34
,
6
(
1962
).
8.
S.
Ueha
,
N.
Maehara
, and
E.
Mori
, “
Mechanism of ultrasonic atomization using a multi-pinhole plate
,”
J. Acoust. Soc. Jpn.
6
,
21
(
1985
).
9.
G.
Forde
,
J.
Friend
, and
T.
Williamson
, “
Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization
,”
Appl. Phys. Lett.
89
,
064105
(
2006
).
10.
A. J.
Yule
and
Y.
Al-Suleimani
, “
On droplet formation from capillary waves from a vibrating surface
,”
Proc. R. Soc. London, Ser. A
456
,
1069
(
2000
).
11.
A. J.
James
,
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Vibration-induced drop atomization and bursting
,”
J. Fluid Mech.
476
,
1
(
2003
).
12.
M.
Kurosawa
,
T.
Watanabe
,
A.
Futami
, and
T.
Higuchi
, “
Surface acoustic wave atomizer
,”
Sens. Actuators, A
50
,
69
(
1995
).
13.
R. M.
White
and
F. W.
Volmer
, “
Direct piezoelectric coupling to surface elastic waves
,”
Appl. Phys. Lett.
7
,
314
(
1965
).
14.
K. Y.
Hashimoto
,
Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation
(
Springer
,
Berlin
,
2000
).
15.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Microparticle collection and concentration via a miniature surface acoustic wave device
,”
Lab Chip
7
,
618
(
2007
).
16.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
,
Proceedings of the 16th Australasian Fluid Mechanics Conference
,
Gold Coast, Queensland, Australia
, 3–7 December
2007
, edited by
P.
Jacobs
,
P.
McIntyre
,
M.
Cleary
,
D.
Buttsworth
,
D.
Mee
,
R.
Clements
,
R.
Morgan
, and
C.
Lemckert
(
University of Queensland
,
Brisbane
,
2007
), pp.
790
793
.
17.
A.
Wixforth
,
C.
Strobl
,
Ch.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z. v.
Guttenberg
, “
Acoustic manipulation of small droplets
,”
Anal. Bioanal. Chem.
379
,
982
(
2004
).
18.
K.
Sritharan
,
C. J.
Strobl
,
M. F.
Schneider
, and
A.
Wixforth
, “
Acoustic mixing at low Reynold’s numbers
,”
Appl. Phys. Lett.
88
,
054102
(
2006
).
19.
R.
Shilton
,
M. K.
Tan
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Particle concentration and mixing in microdrops driven by focused surface acoustic waves
,”
J. Appl. Phys.
104
,
014910
(
2008
).
20.
M. K.
Tan
,
J.
Friend
, and
L.
Yeo
, “
Direct visualization of surface acoustic waves along substrates using smoke particles
,”
Appl. Phys. Lett.
91
,
224101
(
2007
).
21.
H.
Li
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Surface acoustic wave concentration of particle and bioparticle suspensions
,”
Biomed. Microdevices
9
,
647
(
2007
).
22.
A.
Wixforth
, “
Acoustically driven planar microfluidics
,”
Superlattices Microstruct.
33
,
389
(
2003
).
23.
H.
Li
,
J. R.
Friend
, and
L. Y.
Yeo
, “
A scaffold cell seeding method driven by surface acoustic waves
,”
Biomaterials
28
,
4098
(
2007
).
24.
Lord
Rayleigh
, “
On waves propagated along the plane surface of an elastic solid
,”
Proc. London Math. Soc.
s1–s17
,
4
(
1885
).
25.
B.
Vukasinovic
,
M. K.
Smith
, and
A.
Glezer
, “
Mechanisms of free-surface breakup in vibration-induced liquid atomization
,”
Phys. Fluids
19
,
012104
(
2007
).
26.
W. T.
Kelvin
, “
Hydrokinetic solutions and observations
,”
Philos. Mag.
42
,
362
(
1871
).
27.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
28.
M.
Faraday
, “
On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surfaces
,”
Philos. Trans. R. Soc. London
121
,
299
(
1831
).
29.
P.
Chen
and
J.
Viñals
, “
Pattern selection in Faraday waves
,”
Phys. Rev. Lett.
79
,
2670
(
1997
).
30.
J.
Miles
and
D.
Henderson
, “
Parametrically forced surface waves
,”
Annu. Rev. Fluid Mech.
22
,
143
(
1990
).
31.
W.
Eisenmenger
, “
Dynamic properties of the surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10kcsto1.5Mcs
,”
Acustica
9
,
327
(
1959
).
32.
M.
Kurosawa
,
A.
Futami
, and
T.
Higuchi
,
Transducers ’97
,
Proceedings of the 1997 International Conference on Solid-State Sensors and Actuators
,
Chicago, IL
, 16–19 June 1997 (
IEEE
,
Piscataway, NJ
,
1997
), Vol.
2
, pp.
801
804
.
33.
F.
Barreras
,
H.
Amaveda
, and
A.
Lozano
, “
Transient high-frequency ultrasonic water atomization
,”
Exp. Fluids
33
,
405
(
2002
).
34.
Y.-J.
Chen
and
P. H.
Steen
, “
Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge
,”
J. Fluid Mech.
341
,
245
(
1997
).
35.
T. B.
Benjamin
and
F.
Ursell
, “
The stability of the plane free surface of a liquid in vertical periodic motion
,”
Proc. R. Soc. London, Ser. A
225
,
505
(
1954
).
36.
J. W.
Miles
, “
Nonlinear Faraday resonance
,”
J. Fluid Mech.
146
,
285
(
1984
).
37.
V. I.
Sorokin
, “
The effect of fountain formation at the surface of a vertically oscillating liquid
,”
Sov. Phys. Acoust.
3
,
281
(
1957
).
38.
W. L.
Nyborg
,
Acoustic Streaming
(
Academic
,
New York
,
1965
).
39.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
40.
W. L.
Nyborg
, “
Acoustic streaming due to attenuated plane waves
,”
J. Acoust. Soc. Am.
25
,
68
(
1953
).
41.
M.
Schindler
,
P.
Talkner
, and
P.
Hanggi
, “
Computing stationary free-surface shapes in microfluidics
,”
Phys. Fluids
18
,
103303
(
2006
).
42.
M.
Schindler
, “
Free-surface microflows and particle transport
,” Ph.D. thesis,
University of Augsburg
,
2006
.
43.
J.
Eggers
, “
Universal pinching of 3D axisymmetric free-surface flow
,”
Phys. Rev. Lett.
71
,
3458
(
1993
).
44.
D. T.
Papageorgiou
, “
On the breakup of viscous liquid threads
,”
Phys. Fluids
7
,
1529
(
1995
).
45.
J.
Plateau
, “
Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires
,”
Acad. Sci. Bruxelles Mem.
23
,
5
(
1849
).
46.
Lord
Rayleigh
, “
On the capillary phenomena of jets
,”
Proc. R. Soc. London
29
,
71
(
1879
).
47.
K. D.
Frampton
,
S. E.
Martin
, and
K.
Minor
, “
The scaling of acoustic streaming for application in micro-fluidic devices
,”
Appl. Acoust.
64
,
681
(
2003
).
48.
L. Y.
Yeo
and
H. C.
Chang
, “
Electrowetting films on parallel line electrodes
,”
Phys. Rev. E
73
,
011605
(
2006
).
49.
L. Y.
Yeo
,
O. K.
Matar
, and
R. V.
Craster
, “
Drop manipulation and surgery using electric fields
,”
J. Colloid Interface Sci.
306
,
368
(
2007
).
50.
W. E.
Schiesser
,
The Numerical Method of Lines
(
Academic
,
San Diego
,
1991
).
51.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University
,
Cambridge
,
1996
).
52.
N.
Guglielmi
and
E.
Hairer
, “
Implementing Radau IIA methods for stiff delay differential equations
,”
Computing
67
,
1
(
2001
).
53.
L. Y.
Yeo
,
O. K.
Matar
,
E. S.
Perez de Ortiz
, and
G. F.
Hewitt
, “
The dynamics of Marangoni-driven local film drainage between two drops
,”
J. Colloid Interface Sci.
241
,
233
(
2001
).
54.
O. K.
Matar
and
S. M.
Troian
, “
The development of transient fingering patterns during the spreading of surfactant coated films
,”
Phys. Fluids
11
,
3232
(
1999
).
55.
L. Y.
Yeo
,
R. V.
Craster
, and
O. K.
Matar
, “
Marangoni instability of a thin liquid film resting on a locally heated horizontal wall
,”
Phys. Rev. E
67
,
056315
(
2003
).
You do not currently have access to this content.