Experimental evidence is presented in support of the theoretical prediction of Diamessis and Redekopp [J. Phys. Oceanogr.36, 784 (2006)] for wave-induced vortex shedding at the lower solid boundary of a stratified fluid system as a result of global instability. The time-dependent boundary layer induced by a strongly nonlinear internal wave of depression in shallow water is examined experimentally. Measurements of the velocity field close to the bottom boundary illustrate coherent periodic shedding of vortex structures at the lower boundary in the adverse pressure gradient region aft of the wave. The vortical structures ascend high into the water column and cause significant benthic turbulence. It is shown that global instability has a critical threshold dependent on the Reynolds number of the flow and the amplitude of the wave. The critical amplitudes observed are approximately half that predicted by Diamessis and Redekopp [J. Phys. Oceanogr.36, 784 (2006)], indicating that internal wave-induced benthic mixing may be even more prominent than previously thought.

1.
L. A.
Ostrovsky
and
Y. A.
Stepanyants
, “
Internal solitons in laboratory experiments
,”
Chaos
15
,
037111
(
2005
).
2.
K. R.
Helfrich
and
W. K.
Melville
, “
Long non-linear internal waves
,”
Annu. Rev. Fluid Mech.
38
,
395
(
2006
).
3.
A. R.
Osborne
and
T. L.
Burch
, “
Internal solitons in the Andaman Sea
,”
Science
208
,
451
(
1980
).
4.
J.
Bole
,
C. C.
Ebbesmeyer
, and
R. D.
Romea
, in
Proceedings of the 26th Annual Offshore Technology Conference (OTC), Houston, Texas, USA, 2–5 May, 1994
(
Richardson
, Texas), p.
367
.
5.
T. P.
Stanton
and
L. A.
Ostrovsky
, “
Observations of highly non-linear internal solitons over the continental shelf
,”
Geophys. Res. Lett.
25
,
2695
, DOI: 10.1029/98GL01772 (
1998
).
6.
T. F.
Duda
,
J. F.
Lynch
,
J. D.
Irish
,
R. C.
Beardsley
,
S. R.
Ramp
,
C. S.
Chiu
,
T. Y.
Tang
, and
Y. J.
Yang
, “
Internal tide and non-linear internal wave behavior at the continental slope in the Northern South China Sea
,”
IEEE J. Ocean. Eng.
29
,
1105
(
2004
).
7.
P.
Van Gastel
and
G. N.
Ivey
, in
Proceedings of the Sixth International Symposium of Stratified Flows
(Dec. 11–14,
2006
), Vol.
18
, p.
509
;
personal communication (May, 2007).
8.
D. J.
Bogucki
,
T.
Dickey
, and
L. G.
Redekopp
, “
Sediment resuspension and mixing by resonantly generated internal solitary waves
,”
J. Phys. Oceanogr.
27
,
1181
(
1997
).
9.
T. D.
Dickey
,
G. C.
Chang
,
Y. C.
Arawaal
, and
A. G.
Williams
, “
Sediment resuspension in the wakes of Hurricanes Edouard and Hortese
,”
Geophys. Res. Lett.
25
,
2533
, DOI: 10.1029/98GL02635 (
1998
).
10.
P.
Hosegood
and
H.
van Haren
, “
Near-bed solibores over the continental slope in the Faeroe-Shetland Channel
,”
Deep-Sea Res., Part II
51
,
2943
(
2004
).
11.
G. S.
Carter
,
M. C.
Gregg
, and
R-.C.
Lien
, “
Internal waves, solitary-like waves, and mixing on the Monterey Bay Shelf
,”
Cont. Shelf Res.
25
,
1499
(
2005
).
12.
D. J.
Bogucki
,
L. G.
Redekopp
, and
J.
Barth
, “
Internal solitary waves in the Coastal Mixing and Optics 1996 experiment: Multimodal structure and resuspension
,”
J. Geophys. Res.
110
,
C02024
, (
2005
).
13.
J. N.
Moum
,
J. M.
Klymak
,
J. D.
Nash
,
A.
Perlin
, and
W. D.
Smyth
, “
Energy transport by non-linear internal waves
,”
J. Phys. Oceanogr.
37
(
7
),
1968
(
2007
).
14.
D. J.
Bogucki
and
L. G.
Redekopp
, “
A mechanism for sediment resuspension by internal solitary waves
,”
Geophys. Res. Lett.
26
,
1317
, DOI: 10.1029/1999GL900234 (
1999
).
15.
B.
Wang
and
L. G.
Redekopp
, “
Long internal waves in shear flows: topographic resonance and wave-induced global instability
,”
Dyn. Atmos. Oceans
33
,
263
(
2001
).
16.
M.
Stastna
and
K. G.
Lamb
, “
Vortex shedding and sediment resuspension associated with the interaction of an internal solitary wave and the bottom boundary layer
,”
Geophys. Res. Lett.
29
,
1512
, DOI: 10.1029/2001GL014070 (
2002
).
17.
P. J.
Diamessis
and
L. G.
Redekopp
, “
Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers
,”
J. Phys. Oceanogr.
36
,
784
(
2006
).
18.
L. L.
Pauley
,
P.
Moin
, and
W. C.
Reynolds
, “
The structure of two-dimensional separation
,”
J. Fluid Mech.
220
,
397
(
1990
).
19.
M. D.
Ripley
and
L. L.
Pauley
, “
The unsteady structure of two-dimensional steady laminar separation
,”
Phys. Fluids A
5
,
3099
(
1993
).
20.
M.
Alam
and
N. D.
Sandham
, “
Direct numerical simulation of ’short’ laminar separation bubbles with turbulent reattachment
,”
J. Fluid Mech.
410
,
1
(
2000
).
21.
P. J.
Diamessis
and
L. G.
Redekopp
, in
Proceedings of the 10th European Workshop on Physical Processes in Natural Waters, Granada, Spain, 2006
(June 26–28,
2006
), pp.
23
30
;
personal communication (May, 2007).
22.
M.
Carr
and
P. A.
Davies
, “
The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid
,”
Phys. Fluids
18
,
016601
(
2006
).
23.
J. N.
Moum
and
W. D.
Smyth
, “
The pressure disturbance of a non-linear internal wave train
,”
J. Fluid Mech.
558
,
153
(
2006
).
24.
J. N.
Moum
and
J. D.
Nash
, “
Seafloor pressure measurements of non-linear internal waves
,”
J. Phys. Oceanogr.
38
,
481
(
2008
).
25.
J. N.
Moum
,
D. M.
Farmer
,
E. L.
Shroyer
,
W. D.
Smyth
, and
L.
Armi
, “
Dissipation losses in non-linear internal waves propagating across the continental shelf
,”
J. Phys. Oceanogr.
37
,
1989
(
2007
).
26.
A.
Perlin
,
J. N.
Moum
,
J. M.
Klymak
,
M. D.
Levine
,
T.
Boyd
, and
P. M.
Kosro
, “
A modified law-of-the-wall to describe velocity profiles in the bottom boundary layer
,”
J. Geophys. Res.
110
,
C10S10
, DOI: 10.1029/2004JC002310 (
2005
).
27.
P. A.
Davies
, “
Aspects of flow visualisation and density field monitoring of stratified flows
,”
Opt. Lasers Eng.
16
,
311
(
1992
).
28.
T. W.
Kao
,
F. S.
Pan
, and
D.
Renouard
, “
Internal solitons on the pycnocline: generation, propagation, and shoaling and breaking over a slope
,”
J. Fluid Mech.
159
,
19
(
1985
).
29.
J.
Grue
,
A.
Jensen
,
P. O.
Rusas
, and
J. K.
Sveen
, “
Properties of large amplitude internal waves
,”
J. Fluid Mech.
380
,
257
(
1999
).
30.
J. K.
Sveen
,
Y.
Guo
,
P. A.
Davies
, and
J.
Grue
, “
On the breaking of internal solitary waves at a ridge
,”
J. Fluid Mech.
469
,
161
(
2002
).
31.
R. R.
Long
, “
Solitary waves in one and two fluid systems
,”
Tellus
8
,
460
(
1956
).
32.
S. B.
Dalziel
, DigiFlow Users’ Guide, Advanced Image Processing for Fluid Mechanics, Dalziel Research Partners, Cambridge, UK, available at www.dampt.cam.ac.uk/lab/digiflow/ as of March,
2008
.
33.
S. B.
Dalziel
, “
Rayleigh-Taylor instability: experiments with image analysis
,”
Dyn. Atmos. Oceans
20
,
127
(
1993
).
34.
H.
Michallet
and
E.
Bartélemy
, “
Experimental study of interfacial solitary waves
,”
J. Fluid Mech.
366
,
159
(
1998
).
35.
G. H.
Keulegan
, “
Characteristics of internal solitary waves
,”
J. Res. Natl. Bur. Stand.
51
,
133
(
1953
).
36.
C. G.
Koop
and
G.
Butler
, “
An investigation on internal solitary waves in a two-fluid system
,”
J. Fluid Mech.
112
,
225
(
1981
).
37.
H.
Segur
and
J. L.
Hammack
, “
Soliton models of long internal waves
,”
J. Fluid Mech.
118
,
285
(
1982
).
38.
D.
Fructus
and
J.
Grue
, “
Fully non-linear solitary waves in a layered stratified fluid
,”
J. Fluid Mech.
505
,
323
(
2004
).
39.
L. A.
Ostrovsky
and
J.
Grue
, “
Evolution equations for strongly non-linear internal waves
,”
Phys. Fluids
15
,
10
(
2003
).
You do not currently have access to this content.