An analytical solution for pressure-driven periodical electrokinetic flows in a two-dimensional uniform microchannel is presented based on the Poisson–Boltzmann equation for electrical double layer and the Navier–Stokes equations for incompressible viscous fluid. The analytical results indicate that the periodical streaming potential strongly depends on the periodical Reynolds number (Re=ωh2ν) which is a function of the frequency, the channel size, and the kinetic viscosity of fluids. For Re<1, the streaming potential behaves similarly to that of steady flow, whereas it decreases rapidly with Re as Re>1. In addition, the electroviscous force affects greatly both the periodical flow and streaming potential, particularly when the nondimensional electrokinetic diameter κh is small. The electroviscous force has been found to depend on three factors: first, the electroviscous parameter, which is defined as the ratio of the maximum electroviscous force to the pressure gradient; second, the distribution parameter describing the distribution of the electroviscous force over the cross section of the microchannel; third, the coupling coefficient, which is a function of both the periodical Reynolds number and electroviscous parameter, determining both the amplitude attenuation and phase offset of the electroviscous force.

1.
D.
Li
,
Electrokinetics in Microfluidics
(
Elsevier
,
New York
,
2004
).
2.
G. E.
Karniadakis
and
A.
Beskok
,
Micro Flows Fundamental and Simulation
(
Springer-Verlag
,
New York
,
2002
).
3.
R. F.
Probstein
,
Physicochemical Hydrodynamics
(
Wiley
,
New York
,
1994
).
4.
C. L.
Rice
and
R.
Whitehead
, “
Electrokinetic flow in a narrow cylindrical capillary
,”
J. Phys. Chem.
69
,
4017
(
1965
).
5.
R. J.
Hunter
,
Zeta Potential in Colloid Science
(
Academic
,
London
,
1981
).
6.
D.
Erickson
,
D.
Li
, and
C.
Werner
, “
An improved method of determining the ζ-potential and surface conductance
,”
J. Clim.
232
,
186
(
2000
).
7.
O. V.
Mikhailov
,
M. W.
Haartsen
, and
M. N.
Toksoz
, “
Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling
,”
Geophysics
62
,
97
(
1997
).
8.
A.
Mansouri
,
C.
Scheuerman
,
S.
Bhattacharjee
,
D. Y.
Kwok
, and
L. W.
Kostiuk
, “
Transient streaming potential in a finite length microchannel
,”
J. Clim.
292
,
567
(
2005
).
9.
F. H. J.
van der Heyden
,
D.
Stein
, and
C.
Dekker
, “
Streaming currents in a single nanofluidic channel
,”
Phys. Rev. Lett.
95
,
116104
(
2005
).
10.
C.
Yang
,
D.
Li
, and
J. H.
Masliyah
, “
Modeling forced liquid convection in rectangular microchannels with electrokinetic effects
,”
Int. J. Heat Mass Transfer
41
,
4229
(
1998
).
11.
B.
Chun
and
A. J. C.
Ladd
, “
The electroviscous force between charged particles: Beyond the thin-double-layer approximation
,”
J. Colloid Interface Sci.
274
,
687
(
2004
).
12.
C. L.
Ren
and
D.
Li
, “
Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels
,”
Anal. Chim. Acta
531
,
15
(
2005
).
13.
R. G.
Packard
, “
Streaming potential across glass capillaries for sinusoidal pressure
,”
J. Chem. Phys.
21
,
303
(
1953
).
14.
S.
Pride
, “
Governing equations for coupled electromagnetics and acoustics of porous media
,”
Phys. Rev. B
50
,
15678
(
1994
).
15.
P. M.
Reppert
,
F. D.
Morgan
,
D. P.
Lesmes
, and
L.
Jouniaux
, “
Frequency-dependent streaming potentials
,”
J. Colloid Interface Sci.
234
,
194
(
2001
).
16.
J. Th.
Overbeek
,
Irreversible Systems
(
Elsevier
,
New York
,
1952
), Vol.
1
.
17.
D.
Erickson
and
D.
Li
, “
Analysis of alternating current electroosmotic flows in a rectangular microchannel
,”
Langmuir
19
,
5421
(
2003
).
18.
X.
Wang
and
J.
Wu
, “
Flow behavior of periodical electroosmosis in microchannel for biochips
,”
J. Clim.
293
,
483
(
2006
).
You do not currently have access to this content.