The collapse of a granular column is an intriguingly simple table-top experiment which exhibits a host of interesting phenomena. Here, we introduce a planar version in which the collapsing column is only one particle deep perpendicular to the plane of motion to make observations of the internal motion possible. This configuration also particularly lends itself to comparison with discrete element simulations which are performed in tandem. Our experiments confirm that this planar system displays all the same features as collapsing cylinders and rectangular blocks. In particular, the dominant dependence on the initial parameters of the column runout is through a power law of the initial height-to-width aspect ratio. Discrete element simulations, which are found to reproduce the experimental behavior very well, are then used to analyze the velocity field of the collapse process. A predominantly linear velocity profile is found in a moving layer over an evolving static pile. The time-dependent strain rate in this moving layer is in reasonable correspondence with a strain rate prediction for flow down a fixed slope by Rajchenbach [Phys. Rev. Lett.90, 144302 (2003)].

1.
GDR MiDi
, “
On dense granular flows
,”
Eur. Phys. J. E
14
,
341
(
2004
).
2.
E.
Lajeunesse
,
A.
Mangeney-Castelnau
, and
J. P.
Vilotte
, “
Spreading of a granular mass on a horizontal plane
,”
Phys. Fluids
16
,
2371
(
2004
).
3.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M. A.
Hallworth
, “
Axisymmetric collapses of granular columns
,”
J. Fluid Mech.
508
,
175
(
2004
).
4.
N. J.
Balmforth
and
R. R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
538
,
399
(
2005
).
5.
A. J.
Hogg
, “
Two dimensional granular slumps down slopes
,”
Phys. Fluids
19
,
093301
(
2007
).
6.
R. R.
Kerswell
, “
Dam break with Coulomb friction: A model for granular slumping
?”
Phys. Fluids
17
,
057101
(
2005
).
7.
E.
Lajeunesse
,
J. B.
Monnier
, and
G. M.
Homsy
, “
Granular slumping on a horizontal plane
,”
Phys. Fluids
17
,
103302
(
2005
).
8.
E.
Larrieu
,
L.
Staron
, and
E. J.
Hinch
, “
Raining into shallow water as a description of the collapse of a column of grains
,”
J. Fluid Mech.
554
,
259
(
2006
).
9.
E. E.
Doyle
,
H. E.
Huppert
,
G.
Lube
,
H. M.
Mader
, and
R. S. J.
Sparks
, “
Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow water model
,”
Phys. Fluids
19
,
106601
(
2007
).
10.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Collapses of two-dimensional granular columns
,”
Phys. Rev. E
72
,
041301
(
2005
).
11.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Static and flowing regions in granular collapses down channels
,”
Phys. Fluids
19
,
043301
(
2007
).
12.
A.
Mangeney-Castelnau
,
F.
Bouchut
,
J. P.
Vilotte
,
E.
Lajeunesse
,
A.
Aubertin
, and
M.
Pirulli
, “
On the use of Saint-Venant equations to simulate the spreading of a granular mass
,”
J. Geophys. Res.
110
,
B09103
, DOI: 10.1029/2004JB003161 (
2005
).
13.
C.
Meriaux
, “
Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall
,”
Phys. Fluids
18
,
093301
(
2006
).
14.
S.
Siavoshi
and
A.
Kudrolli
, “
Failure of a granular step
,”
Phys. Rev. E
71
,
051302
(
2005
).
15.
L.
Staron
and
E. J.
Hinch
, “
Study of the collapse of granular columns using two-dimensional discrete-grain simulation
,”
J. Fluid Mech.
545
,
1
(
2005
).
16.
L.
Staron
and
E. J.
Hinch
, “
The spreading of a granular mass: role of grain properties and initial conditions
,”
Granular Matter
9
,
205
(
2007
).
17.
E. L.
Thompson
and
H. E.
Huppert
, “
Granular column collapses: further experimental results
,”
J. Fluid Mech.
575
,
177
(
2007
).
18.
R.
Zenit
, “
Computer simulations of the collapse of a granular column
,”
Phys. Fluids
17
,
031703
(
2005
).
19.
E.
Lajeunesse
,
C.
Quantin
,
P.
Allemand
, and
C.
Delacourt
, “
New insights on the runout of large landslides in the Valles-Marineris canyons, Mars
,”
Geophys. Res. Lett.
33
,
L04403
, DOI: 10.1029/2005GL025168 (
2006
).
20.
A.
Lucas
and
A.
Mangeney
, “
Mobility and topographic effects for large Valles Marineris landslides on Mars
,”
Geophys. Res. Lett.
34
,
L10201
, DOI: 10.1029/2007GL029835 (
2007
).
21.
J. C.
Phillips
,
A. J.
Hogg
,
R. R.
Kerswell
, and
N. H.
Thomas
, “
Enhanced mobility of granular mixtures of fine and coarse particles
,”
Earth Planet. Sci. Lett.
246
,
466
(
2006
).
22.
C.
Goujon
,
B.
Dalloz-Dubrujeaud
, and
N.
Thomas
, “
Bidisperse granular avalanches on inclined planes: A rich variety of behaviours
,”
Eur. Phys. J. E
23
,
199
(
2007
).
23.
DEM Solutions
, Edinburgh, Midlothian EH1 3EP, UK.
24.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Geotechnique
29
,
47
(
1979
).
25.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
1985
).
26.
R. D.
Mindlin
, “
Compliance of elastic bodies in contact
,”
J. Appl. Mech.
16
,
259
(
1949
).
27.
J.
Schäfer
,
S.
Dippel
, and
D. E.
Wolf
, “
Force schemes in simulations of granular materials
,”
J. Phys. I
6
,
5
(
1996
).
28.
Y.
Tsuji
,
T.
Tanaka
, and
T.
Hishida
, “
Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe
,”
Powder Technol.
71
,
239
(
1992
).
29.
Y.
Tsuji
,
T.
Kawaguchi
, and
T.
Tanaka
, “
Discrete particle simulation of two-dimensional fluidized bed
,”
Powder Technol.
77
,
79
(
1993
).
30.
D.
Zhang
and
W. J.
Whiten
, “
The calculation of contact forces between particles using spring and damping model
,”
Powder Technol.
88
,
59
(
1996
).
31.
J.
Rajchenbach
, “
Dense, rapid flows of inelastic grains under gravity
,”
Phys. Rev. Lett.
90
,
144302
(
2003
).
You do not currently have access to this content.