Numerous studies of flame interaction with a single vortex and recent simulations of burning in vortex arrays in open tubes demonstrated the same tendency for the turbulent burning rate Urmsλ23, where Urms is the root-mean-square velocity and λ is the vortex size. Here, it is demonstrated that this tendency is not universal for turbulent burning. Flame interaction with vortex arrays is investigated for the geometry of a closed burning chamber by using direct numerical simulations of the complete set of gas-dynamic combustion equations. Various initial conditions in the chamber are considered, including gas at rest and several systems of vortices of different intensities and sizes. It is found that the burning rate in a closed chamber (inverse burning time) depends strongly on the vortex intensity; at sufficiently high intensities it increases with Urms approximately linearly in agreement with the above tendency. On the contrary, dependence of the burning rate on the vortex size is nonmonotonic and qualitatively different from the law λ23. It is shown that there is an optimal vortex size in a closed chamber, which provides the fastest total burning rate. In the present work, the optimal size is six times smaller than the chamber height.

1.
F. A.
Williams
,
Combustion Theory
(
Benjamin
,
Redwood City, CA
,
1985
).
2.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
, 2nd ed. (
Edwards
,
Ann-Arbor, MI
,
2005
).
3.
P.
Renard
,
D.
Thevenin
,
J.
Rolon
, and
S.
Candel
, “
Dynamics of flame/vortex interactions
,”
Prog. Energy Combust. Sci.
26
,
225
(
2000
).
4.
D.
Veynante
and
L.
Vervisch
, “
Turbulent combustion modeling
,”
Prog. Energy Combust. Sci.
28
,
193
(
2002
).
5.
A.
Lipatnikov
and
J.
Chomiak
, “
Molecular transport effects on turbulent flame propagation and structure
,”
Prog. Energy Combust. Sci.
31
,
1
(
2005
).
6.
S.
Kadowaki
and
T.
Hasegawa
, “
Numerical simulation of dynamics of premixed flames: flame instability and vortex-flame interaction
,”
Prog. Energy Combust. Sci.
31
,
193
(
2005
).
7.
K.
Shelkin
, “
On combustion in a turbulent flow
,” NACA Technical Memorandum No. 1110,
1947
.
8.
G.
Damköhler
, “
The effect of turbulence on the flame velocity in gas mixtures
,” NACA Technical Memorandum No. 1112,
1947
.
9.
P.
Clavin
and
F. A.
Williams
, “
Theory of premixed-flame propagation in large-scale turbulence
,”
J. Fluid Mech.
90
,
589
(
1979
).
10.
A. R.
Kerstein
,
W. T.
Ashurst
, and
F. A.
Williams
, “
Field equation for interface propagation in an unsteady homogeneous flow field
,”
Phys. Rev. A
37
,
2728
(
1988
).
11.
V.
Yakhot
, “
Propagation velocity of premixed turbulent flames
,”
Combust. Sci. Technol.
60
,
191
(
1988
).
12.
A.
Pocheau
, “
Scale invariance in turbulent front propagation
,”
Phys. Rev. E
49
,
1109
(
1994
).
13.
R. C.
Aldredge
, “
Premixed flame propagation in a high-intensity, large-scale vortical flow
,”
Combust. Flame
106
,
29
(
1996
).
14.
W. T.
Ashurst
, “
Flow-frequency effect upon Huygens front propagation
,”
Combust. Theory Modell.
4
,
99
(
2000
).
15.
B.
Denet
, “
Pockets in turbulent premixed flames
,”
Combust. Theory Modell.
5
,
85
(
2001
).
16.
L.
Kagan
and
G.
Sivashinsky
, “
Flame propagation and extinction in large-scale vortical flows
,”
Combust. Flame
120
,
222
(
2000
).
17.
L.
Kagan
,
P.
Ronney
, and
G.
Sivashinsky
, “
Activation energy effect on flame propagation in large-scale vortical flows
,”
Combust. Theory Modell.
6
,
479
(
2002
).
18.
V.
Bychkov
and
B.
Denet
, “
Effect of temporal pulsations of a turbulent flow on the flame velocity
,”
Combust. Theory Modell.
6
,
209
(
2002
).
19.
O.
Colin
,
F.
Ducros
,
D.
Veynante
, and
T.
Poinsot
, “
A thickened flame model for large eddy simulations of turbulent premixed combustion
,”
Phys. Fluids
12
,
1843
(
2000
).
20.
L.
Selle
,
G.
Lartigue
,
T.
Poinsot
,
R.
Koch
,
K. U.
Schildmacher
,
W.
Krebs
,
B.
Prade
,
P.
Kaufmann
, and
D.
Veynante
, “
Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes
,”
Combust. Flame
137
,
489
(
2004
).
21.
R. G.
Abdel-Gayed
,
D.
Bradley
, and
M.
Lawes
, “
Turbulent burning velocities: a general correlation in terms of straining rates
,”
Proc. R. Soc. London, Ser. A
414
,
389
(
1987
).
22.
R. C.
Aldredge
,
V.
Vaezi
, and
P. D.
Ronney
, “
Premixed-flame propagation in turbulent Taylor-Couette flow
,”
Combust. Flame
115
,
395
(
1998
).
23.
H.
Kobayashi
,
Y.
Kawabata
, and
K.
Maruta
, “
Experimental study on general correlation of turbulent burning velocity at high pressure
,”
Proc. Combust. Inst.
27
,
941
(
1998
).
24.
H.
Kobayashi
,
T.
Kawahata
,
K.
Seyama
,
T.
Fujimari
, and
J. S.
Kim
, “
Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames
,”
Proc. Combust. Inst.
29
,
1793
(
2002
).
25.
T. W.
Lee
and
S. J.
Lee
, “
Direct comparison of turbulent burning velocity and flame surface properties in turbulent premixed flames
,”
Combust. Flame
132
,
492
(
2003
).
26.
S. A.
Filatyev
,
J. F.
Driscoll
,
C. D.
Carter
, and
J. M.
Donbar
, “
Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities
,”
Combust. Flame
141
,
1
(
2005
).
27.
V. R.
Savarianandam
and
C. J.
Lawn
, “
Burning velocity of premixed turbulent flames in the weakly wrinkled regime
,”
Combust. Flame
146
,
1
(
2006
).
28.
V.
Bychkov
, “
Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames
,”
Phys. Rev. E
68
,
066304
(
2003
).
29.
V.
Akkerman
and
V.
Bychkov
, “
Velocity of weakly turbulent flames of finite thickness
,”
Combust. Theory Modell.
9
,
323
(
2005
).
30.
V.
Bychkov
,
A.
Petchenko
, and
V.
Akkerman
, “
On the theory of turbulent flame velocity
,”
Combust. Sci. Technol.
179
,
137
(
2007
).
31.
C.
Meneveau
and
T.
Poinsot
, “
Stretching and quenching of flamelets in premixed turbulent combustion
,”
Combust. Flame
86
,
311
(
1991
).
32.
T.
Poinsot
,
D.
Veynante
, and
S.
Candel
, “
Quenching processes and premixed turbulent combustion diagrams
,”
J. Fluid Mech.
228
,
561
(
1991
).
33.
T.
Hasegawa
,
T.
Morooka
, and
S.
Nishiki
, “
Mechanism of interaction between a vortex pair and a premixed flame
,”
Combust. Sci. Technol.
150
,
115
(
2000
).
34.
V.
Akkerman
,
V.
Bychkov
, and
L. E.
Eriksson
, “
Numerical study of turbulent flame velocity
,”
Combust. Flame
151
,
452
(
2007
).
35.
V.
Akkerman
,
V.
Bychkov
,
A.
Petchenko
, and
L. E.
Eriksson
, “
Flame oscillations in tubes with nonslip at the walls
,”
Combust. Flame
145
,
675
(
2006
).
36.
A.
Petchenko
,
V.
Bychkov
,
V.
Akkerman
, and
L. E.
Eriksson
, “
Flame-sound interaction in tubes with nonslip walls
,”
Combust. Flame
149
,
418
(
2007
).
37.
V.
Bychkov
,
V.
Akkerman
,
G.
Fru
,
A.
Petchenko
, and
L. E.
Eriksson
, “
Flame acceleration in the early stages of burning in tubes
,”
Combust. Flame
150
,
263
(
2007
).
38.
V.
Bychkov
,
S.
Golberg
,
M.
Liberman
, and
L. E.
Eriksson
, “
Propagation of curved stationary flames in tubes
,”
Phys. Rev. E
54
,
3713
(
1996
).
39.
V.
Bychkov
,
A.
Petchenko
,
V.
Akkerman
, and
L. E.
Eriksson
, “
Theory and modeling of accelerating flames in tubes
,”
Phys. Rev. E
72
,
046307
(
2005
).
40.
A.
Petchenko
,
V.
Bychkov
,
V.
Akkerman
, and
L. E.
Eriksson
, “
Violent folding of a flame front in a flame-acoustic resonance
,”
Phys. Rev. Lett.
97
,
164501
(
2006
).
41.
D.
Dunn-Rankin
,
P.
Barr
, and
R.
Sawyer
, “
Numerical and experimental study of tulip flame formation in a closed vessel
,”
Proc. Combust. Inst.
21
,
1921
(
1986
).
42.
M.
Metghalchi
and
J. C.
Keck
, “
Laminar burning velocity of propane-air mixtures at high temperature and pressure
,”
Combust. Flame
38
,
143
(
1980
).
43.
M.
Metghalchi
and
J. C.
Keck
, “
Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature
,”
Combust. Flame
48
,
191
(
1982
).
44.
Ya. B.
Zeldovich
,
G. I.
Barenblatt
,
V. B.
Librovich
, and
G. M.
Makhviladze
,
Mathematical Theory of Combustion and Explosion
(
Consultants Bureau
,
New York
,
1985
).
45.
D.
Bradley
,
R. A.
Hicks
,
M.
Lawes
,
C. G. W.
Sheppard
, and
R.
Woolley
, “
The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb
,”
Combust. Flame
115
,
126
(
1998
).
46.
L. E.
Eriksson
, “
A third-order accurate upwind-based finite volume scheme for unsteady compressible viscous flows
,” VAC Report No. 9370-154, Volvo Aero Corporation,
1993
.
47.
L. E.
Eriksson
, “
Development and validation of highly modular solver versions G2DFlow and G3DFlow series for compressible viscous reactive flow
,” VAC Report No. 9970-1162, Volvo Aero Corporation,
1995
.
48.
N.
Andersson
,
L. E.
Eriksson
, and
L.
Davidsson
, “
Investigation of an isothermal Mach 0.75 jet and its radiated sound using large-eddy simulation and Kirchoff surface integration
,”
Int. J. Heat Fluid Flow
26
,
393
(
2005
).
49.
N.
Andersson
,
L. E.
Eriksson
, and
L.
Davidsson
, “
Large-eddy simulation of subsonic turbulent jets and their radiated sound
,”
AIAA J.
43
,
1899
(
2005
).
50.
C.
Wollblad
,
L.
Davidson
, and
L. E.
Eriksson
, “
Large eddy simulation of transonic flow with shock wave/turbulent boundary layer interaction
,”
AIAA J.
44
,
2340
(
2006
).
51.
V.
Bychkov
and
M.
Liberman
, “
Dynamics and stability of premixed flames
,”
Phys. Rep.
325
,
115
(
2000
).
52.
C.
Clanet
and
G.
Searby
, “
On the theory of tulip flame phenomena
,”
Combust. Flame
105
,
225
(
1996
).
53.
V.
Bychkov
, “
Analytical scalings for flame interaction with sound waves
,”
Phys. Fluids
11
,
3168
(
1999
).
54.
G.
Searby
, “
Acoustic instability in premixed flames
,”
Combust. Sci. Technol.
81
,
221
(
1992
).
55.
G.
Searby
and
D.
Rochwerger
, “
A parametric acoustic instability in premixed flames
,”
J. Fluid Mech.
231
,
529
(
1991
).
56.
O.
Belotserkovsky
,
A.
Oparin
, and
V.
Chechetkin
,
Turbulence: New Approaches
(
Cambridge Science
,
Cambridge, UK
,
2005
).
57.
M.
Keskinen
,
A.
Velikovich
, and
A.
Schmitt
, “
Multimode evolution of the ablative Richtmyer-Meshkov and Landau-Darrieus instability in laser imprint of planar targets
,”
Phys. Plasmas
13
,
122703
(
2006
).
58.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
(
1960
).
59.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
4
,
151
(
1969
).
60.
G.
Searby
and
P.
Clavin
, “
Weakly turbulent, wrinkled flames in premixed gases
,”
Combust. Sci. Technol.
46
,
167
(
1986
).
61.
R. C.
Aldredge
and
F. A.
Williams
, “
Influence of wrinkled premixed-flame dynamics on large-scale, low-intensity turbulent flow
,”
J. Fluid Mech.
228
,
487
(
1991
).
62.
H.
Kobayashi
and
H.
Kawazoe
, “
Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames
,”
Proc. Combust. Inst.
28
,
375
(
2000
).
63.
A.
Petchenko
,
V.
Bychkov
,
L. E.
Eriksson
, and
A.
Oparin
, “
Flame propagation along the vortex axis
,”
Combust. Theory Modell.
10
,
581
(
2006
).
You do not currently have access to this content.