Direct numerical simulations based on the volume-of-fluid method have been performed in order to identify the influence of the inflow velocity conditions on the sensitivity of primary breakup phenomena. A liquid sheet ejected into a gaseous environment at moderate Reynolds numbers ranging from Re=3000 to 7000 was considered. The numerical setup allows to vary the influencing parameters individually such that numerical simulations can be performed as “numerical experiments” by varying each of the possible parameters separately. The focus of the present study was directed to the identification of those parameters that most strongly enhance primary breakup phenomena. These key parameters are the flow quantities such as the range of the inflow velocity and the inherent character of the mean velocity profile as well as the corresponding dimensionless groups and turbulence quantities of the nozzle flow. The present results show that in addition to these well known quantities the kinetic energy flux, which depends on the character of the mean velocity profile generated by the nozzle geometry, has a drastic influence on the instabilities appearing. Detailed insight into the flow phenomena is given, such as the velocity profile relaxation and the development of shear layers as well as the spreading rates appearing depending on the inflow velocity conditions. In addition, the influence of the spatial resolution as well as the influence of a simplified two-dimensional compared to a three-dimensional setup has been investigated. The outcome of different mean velocity profiles at the inflow is compared by analyzing the typical kinetic energy and spreading rate issued by different nozzle designs.

1.
K.
Kuan-yun Kuo
,
Principles of Combustion
(
Wiley
,
New York
,
1986
).
2.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1
,
4
(
1878
).
3.
C.
Weber
, “
Zum Zerfall eines Flüssigkeitsstrahles
,”
Z. Angew. Math. Mech.
11
,
136
(
1931
).
4.
S. P.
Lin
,
Breakup of Liquid Sheets and Jets
(
Cambridge University Press
,
Cambridge
,
2003
).
5.
A. H.
Lefebvre
,
Atomization and Sprays
(
Hemisphere
,
New York
,
1989
).
6.
P.
Wu
,
R.
Miranda
, and
G.
Faeth
, “
Effect of initial inflow conditions on primary break-up of nonturbulent and turbulent jets
,”
Atomization Sprays
5
,
175
(
1995
).
7.
K.
Heukelbach
, “
Untersuchung zum Einfluss der Düseninnenströmung auf die Stabilität von flächigen Flüssigkeitsstrahlen
,” Ph.D. thesis,
Technische Universität Darmstadt
,
2003
.
8.
M.
Klein
, “
Direkte Numerische Simulation des primären Strahlzerfalls in Einstoffzerstäuberdüsen
,” Ph.D. thesis,
Technische Universität Darmstadt
,
2002
.
9.
H.
Hiroyasu
, “
Spray breakup mechanism from the hole-type nozzle and its applications
,”
Atomization Sprays
10
,
511
(
2000
).
10.
Y.
Pan
and
K.
Suga
, “
A numerical study on the breakup process of laminar liquid jets into a gas
,”
Phys. Fluids
18
,
052101
(
2006
).
11.
T.
Ménard
,
S.
Tanguy
, and
A.
Berlemont
, “
Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet
,”
Int. J. Multiphase Flow
33
,
510
(
2007
).
12.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
(
2003
).
13.
M.
Klein
, “
Direct numerical simulation of a spatially developing water sheet at moderate Reynolds number
,”
Int. J. Heat Fluid Flow
26
,
722
(
2005
).
14.
W.
Sander
,
B.
Weigand
,
K.
Jellinghaus
, and
K. D.
Beheng
,
High-Performance Computing in Science and Engineering 2005: Transactions of the High Performance Computing Center Stuttgart (HLRS)
(
Springer-Verlag
,
Berlin
,
2005
), pp.
129
142
.
15.
W.
Sander
and
B.
Weigand
,
High-Performance Computing in Science and Engineering 2006: Transactions of the High Performance Computing Center Stuttgart (HLRS)
(
Springer-Verlag
,
Berlin
,
2006
), pp.
223
236
.
16.
M. J.
McCarthy
and
N. A.
Molloy
, “
Review of stability of liquid jets and the influence of nozzle design
,”
Chem. Eng. J.
7
,
1
(
1974
).
17.
M.
Rieber
, “
Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen
,” Ph.D. thesis,
Universität Stuttgart
,
2004
.
18.
M.
Rieber
and
A.
Frohn
,
High-Performance Computing in Science and Engineering 99: Transactions of the High Performance Computing Center Stuttgart (HLRS)
(
Springer Verlag
,
Berlin
,
2000
), pp.
241
252
.
19.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
,
134
(
1994
).
20.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
21.
E. G.
Puckett
,
A. S.
Almgren
,
J. B.
Bell
,
D. L.
Marcus
, and
W. J.
Rider
, “
A high-order projection method for tracking fluid interfaces in variable density incompressible flows
,”
J. Comput. Phys.
130
,
269
(
1997
).
22.
J. B.
Bell
,
P.
Colella
, and
H. M.
Glaz
, “
A second-order projection method for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
85
,
257
(
1989
).
23.
W. J.
Rider
and
D. B.
Kothe
, “
Reconstructing volume tracking
,”
J. Comput. Phys.
141
,
112
(
1998
).
24.
T.
Lund
,
X.
Wu
, and
D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
25.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University Press
,
Cambridge
,
1953
).
26.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ=590
,”
Phys. Fluids
11
,
943
(
1999
).
27.
R. E.
Spall
and
B. M.
Ashby
, “
A numerical study of vortex breakdown in turbulent swirling flows
,”
J. Fluids Eng.
122
,
179
(
2000
).
28.
T.
Klein
,
M.
Strengert
,
S.
Stegmaier
, and
T.
Ertl
, “
Exploiting frame-to-frame coherence for accelerating high-quality volume raycasting on graphics hardware
,”
Proceedings of IEEE Visualization
,
Los Alamitos, CA
, edited by
C. T.
Silva
,
E.
Gröller
, and
H.
Rushmeier
(
IEEE Computer Society
,
Los Alamitos
,
2005
), pp.
223
230
.
You do not currently have access to this content.