An initial-value problem of the Navier–Stokes equation is solved, at small Reynolds numbers, for evolution of an axisymmetric vortex ring. The traveling speed is written down in closed form over the whole time range, in terms of the generalized hypergeometric functions, for a vortex ring starting with infinitely thin core. We make a thorough asymptotic analysis of this solution. Three stages are identified, namely, initial, matured, and decaying stages. At the initial stage when the core is very thin, correction terms are found to Saffman’s early-time formula [Stud. Appl. Math.449, 371 (1970)]. The augmented formula establishes a lower bound on traveling speed of vortex rings starting from delta-function cores and exhibits an excellent agreement with the numerical simulation, at a small Reynolds number, conducted by Stanaway et al (NASA Technical Memorandum No. 101041, 1988). At the matured and decaying stages, the traveling speed is found to be closely fitted by Saffman’s matured-stage formula, over a very wide time range, by an adjustment of disposable parameters in his formula. The traveling distance as a function of time is also deduced in closed form, and a simple relation of the maximum distance traversed during the whole life, being finite, is found with the viscosity, the initial circulation, and the initial ring radius. The formation number for an optimal vortex ring, estimated based on our solution, compares well with the experiments and numerical simulations.

1.
A. A.
Puretzky
,
H.
Schittenhelm
,
X.
Fan
,
M. J.
Lance
,
L. F.
Allard
, Jr.
, and
D. B.
Geohegan
, “
Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization
,”
Phys. Rev. B
65
,
245425
(
2002
).
2.
S.
Lugomer
and
Y.
Fukumoto
, “
Hierarchical instability of a vortex ring array in multipulse laser-matter interactions
,”
Fluid Dyn. Res.
36
,
277
(
2005
).
3.
H.
Helmholtz
, “
Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechenn
,”
Crelle’s J.
55
,
25
(
1858
)
[translated by
P. G.
Tait
, “
On integrals of the hydrodynamical equations which express vortex-motion
Philos. Mag.
33
,
485
(
1867
)].
4.
R.
Krasny
and
M.
Nitsche
, “
The onset of chaos in vortex sheet flow
,”
J. Fluid Mech.
454
,
47
(
2002
).
5.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Annu. Rev. Fluid Mech.
24
,
235
(
1992
).
6.
T.
Lim
and
T.
Nickels
, “
Vortex rings
,” in
Fluid Vortices
, edited by
S. I.
Green
(
Kluwer
,
Dordrecht
,
1995
).
7.
A.
Glezer
and
D.
Coles
, “
An experimental study of a turbulent vortex ring
,”
J. Fluid Mech.
211
,
243
(
1990
).
8.
R. J.
Donnelly
,
Quantized Vortices in Helium II
(
Cambridge University Press
,
Cambridge
,
1991
).
9.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
Cambridge
,
1992
).
10.
C.
Tung
and
L.
Ting
, “
Motion and decay of a vortex ring
,”
Phys. Fluids
10
,
901
(
1967
).
11.
P. G.
Saffman
, “
The velocity of viscous vortex rings
,”
Stud. Appl. Math.
449
,
371
(
1970
).
12.
C.-T.
Wang
,
C.-C.
Chu
, and
C.
Chang
, “
Initial motion of a viscous vortex ring
,”
Proc. R. Soc. London, Ser. A
446
,
589
(
1994
).
13.
Y.
Fukumoto
and
H. K.
Moffatt
, “
Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity
,”
J. Fluid Mech.
417
,
1
(
2000
).
14.
O. M.
Phillips
, “
The final period of decay of non-homogeneous turbulence
,”
Proc. Cambridge Philos. Soc.
252
,
135
(
1956
).
15.
T.
Kambe
and
Y.
Oshima
, “
Generation and decay of viscous vortex rings
,”
J. Phys. Soc. Jpn.
38
,
271
(
1975
).
16.
N.
Rott
and
B.
Cantwell
, “
Vortex drift. I. Dynamic interpretation
,”
Phys. Fluids A
5
,
1443
(
1993
).
17.
N.
Rott
and
B.
Cantwell
, “
Vortex drift. II. The flow potential surrounding a drifting vortical region
,”
Phys. Fluids A
5
,
1451
(
1993
).
18.
H.
Lamb
,
Hydrodynamics
, 6th. ed. (
Dover
,
New York
,
1932
), Secs. 150 and 152.
19.
S.
Stanaway
,
B. J.
Cantwell
, and
P. R.
Spalart
, “
A numerical study of viscous vortex rings using a spectral method
,” NASA Technical Memorandum No. 101041,
1988
.
20.
S.
Stanaway
,
B. J.
Cantwell
, and
P. R.
Spalart
, “
Navier–Stokes simulations of axisymmetric vortex rings
,” AIAA Paper No. 88-0318 (
1988
).
21.
A.
Weigand
and
M.
Gharib
, “
On the evolution of laminar vortex rings
,”
Exp. Fluids
22
,
447
(
1997
).
22.
A.
Kaltaev
, “
Investigation of dynamic characteristics of motion of a vortex ring of viscous fluid
,” in
Continuum Dynamics
(
Kazah State University
,
Alma-Ata
,
1982
) (in Russian), p.
63
.
23.
A.
Berezovski
and
F.
Kaplanski
, “
Vorticity distributions for thick and thin vortex pairs and rings
,”
Arch. Mech.
47
,
1015
(
1995
).
24.
F.
Kaplanski
and
U.
Rudi
, “
Dynamics of a viscous vortex ring
,”
Int. J. Fluid Mech. Res.
26
,
618
(
1999
).
25.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
(
1998
).
26.
P. E.
Linden
and
J. S.
Turner
, “
The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices
,”
J. Fluid Mech.
427
,
61
(
2001
).
27.
J.
Dabiri
and
M.
Gharib
, “
The role of optimal vortex formation in biological fluid transport
,”
Proc. R. Soc. London, Ser. B
272
,
1557
(
2005
).
28.
J.
Norbury
, “
A family of steady vortex rings
,”
J. Fluid Mech.
57
,
417
(
1973
).
29.
K.
Mohseni
and
M.
Gharib
, “
A model for universal time scale of vortex ring formation
,”
Phys. Fluids
10
,
2436
(
1998
).
30.
M.
Shusser
and
M.
Gharib
, “
Energy and velocity of a forming vortex ring
,”
Phys. Fluids
12
,
618
(
2000
).
31.
K.
Mohseni
, “
Statistical equilibrium theory of axisymmetric flows: Kelvin’s variational principle and an explanation for the vortex ring pinch-off process
,”
Phys. Fluids
13
,
1924
(
2001
).
32.
F.
Kaplanski
and
Y.
Rudi
, “
A model for the formation of ‘optimal’ vortex rings taking into account viscosity
,”
Phys. Fluids
17
,
087101
(
2005
).
33.
D.
Fabris
and
D.
Liepmann
, “
Vortex ring structure at late stages of formation
,”
Phys. Fluids
9
,
2801
(
1997
).
34.
J. E.
Cater
,
J.
Soria
, and
T. T.
Lim
, “
The interaction of the piston vortex with a piston-generated vortex ring
,”
J. Fluid Mech.
499
,
327
(
2004
).
35.
Y.
Fukumoto
and
H. K.
Moffatt
, “
Kinematic variational principle for motion of vortex rings
,”
Physica D
(in press).
36.
M.
Shusser
,
M.
Gharib
,
M.
Rosenfeld
, and
K.
Mohseni
, “
On the effect of pipe boundary layer growth on the formation of a laminar vortex ring generated by a piston/cylinder arrangement
,”
Theor. Comput. Fluid Dyn.
15
,
303
(
2002
).
37.
M.
Shusser
,
M.
Rosenfeld
,
J. O.
Dabiri
, and
M.
Gharib
, “
Effect of time-dependent piston velocity program on vortex ring formation in a piston/cylinder arrangement
,”
Phys. Fluids
18
,
033601
(
2006
).
38.
Wolfram Research, Inc.
,
Mathematica Edition: Version 5.2
(
Wolfram Research
,
Chicago
,
2005
).
You do not currently have access to this content.