We treat the flow of ferrofluid in a cylindrical container subjected to a uniform rotating magnetic field, commonly referred to as spin-up flow. A review of theoretical and experimental results published since the phenomenon was first observed in 1967 shows that the experimental data from surface observations of tracer particles are inadequate for the assessment of bulk flow theories. We present direct measurements of the bulk flow by using the ultrasound velocity profile method, and torque measurements for water and kerosene based ferrofluids, showing the fluid corotating with the field in a rigid-body-like fashion throughout most of the bulk region of the container, except near the air-fluid interface, where it was observed to counter-rotate. We obtain an extension of the spin diffusion theory of Zaitsev and Shliomis, using the regular perturbation method. The solution is rigorously valid for αK32, where αK is the Langevin parameter evaluated by using the applied field magnitude, and provides a means for obtaining successively higher contributions of the nonlinearity of the equilibrium magnetization response and the spin-magnetization coupling in the magnetization relaxation equation. Because of limitations in the sensitivity of our apparatus, experiments were carried out under conditions for which α1. Still, under such conditions the predictions of the analysis are in good qualitative agreement with the experimental observations. An estimate of the spin viscosity is obtained from comparison of flow measurements and theoretical results of the extrapolated wall velocity from the regular perturbation method. The estimated value lies in the range of 1081012kgms1 and is several orders of magnitude higher than that obtained from dimensional analysis of a suspension of noninteracting particles in a Newtonian fluid.

1.
R.
Moskowitz
and
R. E.
Rosensweig
, “
Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic field
,”
Appl. Phys. Lett.
11
,
301
(
1967
).
2.
V. M.
Zaitsev
and
M. I.
Shliomis
, “
Entrainment of ferromagnetic suspension by a rotating field
,”
J. Appl. Mech. Tech. Phys.
10
,
696
(
1969
).
3.
O. A.
Glazov
, “
Motion of a ferrosuspension in rotating magnetic fields
,”
Magn. Gidrodin.
11
,
16
(
1975
).
4.
O. A.
Glazov
, “
Role of higher harmonics in ferrosuspension motion in a rotating magnetic field
,”
Magn. Gidrodin.
11
,
31
(
1975
).
5.
O. A.
Glazov
, “
Velocity profiles for magnetic fluids in rotating magnetic fields
,”
Magn. Gidrodin.
18
,
27
(
1982
).
6.
R. E.
Rosensweig
and
R. J.
Johnston
, in
Continuum Mechanics and its Applications
, edited by
C.
Graham
and
S.
Malik
(
Hemisphere
,
New York
,
1989
), pp.
707
729
.
7.
R. E.
Rosensweig
,
J.
Popplewell
, and
R. J.
Johnston
, “
Magnetic fluid motion in rotating field
,”
J. Magn. Magn. Mater.
85
,
171
(
1990
).
8.
A. V.
Lebedev
and
A. F.
Pshenichnikov
, “
Motion of a magnetic fluid in a rotating magnetic field
,”
Magn. Gidrodin.
27
,
7
(
1991
).
9.
A. V.
Lebedev
and
A. F.
Pshenichnikov
, “
Rotational effect: The influence of free or solid moving boundaries
,”
J. Magn. Magn. Mater.
122
,
227
(
1993
).
10.
P. N.
Kaloni
, “
Some remarks on the boundary-conditions for magnetic fluids
,”
Int. J. Eng. Sci.
30
,
1451
(
1992
).
11.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Dover
,
Mineola
,
1997
).
12.
R. E.
Rosensweig
, “
Role of internal rotations in selected magnetic fluid applications
,”
Magn. Gidrodin.
36
,
241
(
2000
).
13.
A. F.
Pshenichnikov
and
A. V.
Lebedev
, “
Tangential stresses on the magnetic fluid boundary and the rotational effect
,”
Magnetohydrodynamics (N.Y.)
36
,
254
(
2000
).
14.
A. F.
Pshenichnikov
,
A. V.
Lebedev
, and
M. I.
Shliomis
, “
On the rotational effect in nonuniform magnetic fluids
,”
Magnetohydrodynamics (N.Y.)
36
,
275
(
2000
).
15.
R.
Brown
and
T.
Horsnell
, “
The wrong way round
,”
Electrical Review
183
,
235
(
1969
).
16.
I.
Kagan
,
V.
Rykov
, and
E. I.
Yantovskii
, “
Flow of a dielectric ferromagnetic suspension in a rotating magnetic field
,”
Magn. Gidrodin.
9
,
135
(
1973
).
17.
G. H.
Calugaru
,
C.
Cotae
,
R.
Badescu
,
V.
Badescu
, and
E.
Luca
, “
A new aspect of the movement of ferrofluids in a rotating magnetic field
,”
Rev. Roum. Phys.
21
,
439
(
1976
).
18.
J. S.
Dahler
and
L. E.
Scriven
, “
Angular momentum of continua
,”
Nature (London)
192
,
36
(
1961
).
19.
J. S.
Dahler
and
L. E.
Scriven
, “
Theory of structured continua. I. General considerations of angular momentum and polarization
,”
Proc. R. Soc. London, Ser. A
275
,
504
(
1963
).
20.
D. W.
Condiff
and
J. S.
Dahler
, “
Fluid mechanical aspects of antisymmetric stress
,”
Phys. Fluids
7
,
842
(
1964
).
21.
M. I.
Shliomis
, “
Effective viscosity of magnetic suspensions
,”
Sov. Phys. JETP
34
,
1291
(
1972
).
22.
M.
Zahn
and
D. R.
Greer
, “
Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields
,”
J. Magn. Magn. Mater.
149
,
165
(
1995
).
23.
M.
Zahn
and
L. L.
Pioch
, “
Ferrofluid flows in AC and traveling wave magnetic fields with effective positive, zero or negative dynamic viscosity
,”
J. Magn. Magn. Mater.
201
,
144
(
1999
).
24.
C.
Rinaldi
and
H.
Brenner
, “
Body versus surface forces in continuum mechanics: Is the Maxwell stress tensor a physically objective Cauchy stress
?”
Phys. Rev. E
65
,
036615
(
2002
).
25.
C.
Rinaldi
and
M.
Zahn
, “
Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields
,”
Phys. Fluids
14
,
2847
(
2002
).
26.
P.
Brunn
, “
The velocity slip of polar fluids
,”
Rheol. Acta
14
,
1039
(
1975
).
27.
E. L.
Aero
,
A. N.
Bulygin
, and
E. V.
Kuvshinski
, “
Asymmetric hydromechanics
,”
J. Lumin.
29
,
333
(
1965
).
28.
M. I.
Shliomis
,
T. P.
Lyubimova
, and
D. V.
Lyubimov
, “
Ferrohydrodynamics: an essay on the progress of ideas
,”
Chem. Eng. Commun.
67
,
275
(
1988
).
29.
A.
Chaves
,
C.
Rinaldi
,
S.
Elborai
,
X.
He
, and
M.
Zahn
, “
Bulk flow in ferrofluids in a uniform rotating magnetic field
,”
Phys. Rev. Lett.
96
,
194501
(
2006
).
30.
R. E.
Rosensweig
, “
Continuum equations for magnetic and dielectric fluids with internal rotations
,”
J. Chem. Phys.
121
,
1228
(
2000
).
31.
H.
Brenner
, “
Rheology of two-phase systems
,”
Annu. Rev. Fluid Mech.
2
,
137
(
1970
).
32.
M. I.
Shliomis
, “
Concerning one gyromagnetic effect in a liquid paramagnet
,”
Sov. Phys. JETP
39
,
701
(
1974
).
33.
M. I.
Shliomis
, “
Ferrohydrodynamics: Testing a third magnetization equation
,”
Phys. Rev. E
64
,
060501
(
2001
).
34.
M. I.
Shliomis
, “
Comment on Magnetoviscosity and relaxation in ferrofluids
,”
Phys. Rev. E
64
,
063501
(
2001
).
35.
B. U.
Felderhof
, “
Steady-state magnetoviscosity of a dilute ferrofluid
,”
Magn. Gidrodin.
36
,
329
(
2000
).
36.
B. U.
Felderhof
, “
Magnetoviscosity and relaxation in ferrofluids
,”
Phys. Rev. E
62
,
3848
(
2000
).
37.
B. U.
Felderhof
, “
Reply to “Comment on ‘Magnetoviscosity and relaxation in ferrofluids’”
,”
Phys. Rev. E
64
,
063502
(
2001
).
38.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill
,
New York
,
1941
).
39.
J. R.
Melcher
,
Continuum Electromechanics
(
MIT
,
Cambridge
,
1981
).
40.
K. A.
Kline
, “
Predictions from polar fluid theory which are independent of spin boundary-condition
,”
Trans. Soc. Rheol.
19
,
139
(
1975
).
41.
S. C.
Cowin
, “
Note on Predictions from polar fluid theory which are independent of spin boundary-condition
,”
Trans. Soc. Rheol.
20
,
195
(
1976
).
42.
K. A.
Kline
, “
Discussion of Predictions from polar fluid theory which are independent of spin boundary-conditions
,”
J. Rheol.
26
,
317
(
1982
).
43.
H.
Lamb
,
Hydrodynamics
, 6th ed. (
Dover
,
New York
,
1945
).
44.
W. M.
Deen
,
Analysis of Transport Phenomena
(
Oxford University Press
,
New York
,
1998
).
45.
C.
Rinaldi
, “
Continuum modeling of polarizable systems
,” Ph.D. thesis,
Massachussetts Institute of Technology
,
2002
.
46.
A.
Rosenthal
,
C.
Rinaldi
,
T.
Franklin
, and
M.
Zahn
, “
Torque measurements in spin-up flow of ferrofluids
,”
J. Fluids Eng.
126
,
198
(
2004
).
47.
A.
Chaves
,
F.
Gutman
, and
C.
Rinaldi
, “
Torque and bulk flow of ferrofluid in an annular gap subjected to a rotating magnetic field
,”
J. Fluids Eng.
129
,
412
(
2007
).
48.
Y.
Takeda
, “
Velocity profile measurement by ultrasonic Doppler method
,”
Exp. Therm. Fluid Sci.
10
,
444
(
1995
).
49.
Y.
Takeda
, “
Ultrasonic Doppler method for velocity profile measurement in fluid dynamics and fluid engineering
,”
Exp. Fluids
26
,
177
(
1999
).
50.
B. J.
de Gans
,
C.
Blom
,
J.
Mellema
, and
A. P.
Philipse
, “
Preparation and magnetisation of a silica-magnetite inverse ferrofluid
,”
J. Magn. Magn. Mater.
201
,
11
(
1999
).
51.
B. J.
de Gans
,
C.
Blom
,
A. P.
Philipse
, and
J.
Mellema
, “
Linear viscoelasticity of an inverse ferrofluid
,”
Phys. Rev. E
60
,
4518
(
1999
).
52.
B. J.
de Gans
,
H.
Hoekstra
, and
J.
Mellema
, “
Non-linear magnetorheological behaviour of an inverse ferrofluid
,”
Faraday Discuss.
112
,
209
(
1999
).
53.
B. J.
de Gans
,
N. j.
Duin
,
D.
van den Ende
, and
J.
Mellema
, “
The influence of particle size on the magnerheological properties of an inverse ferrofluid
,”
J. Chem. Phys.
113
,
2032
(
2000
).
54.
D.
Brito
,
H.-C.
Nataf
,
P.
Cardin
,
J.
Aubert
, and
J.-P.
Masson
, “
Ultrasonic Doppler velocimetry in liquid gallium
,”
Exp. Fluids
31
,
653
(
2001
).
55.
S.
Feng
,
A.
Graham
,
J.
Abbott
, and
H.
Brenner
, “
Antisymmetric stresses in suspensions: vortex viscosity and energy dissipation
,”
J. Fluid Mech.
563
,
97
(
2006
).
You do not currently have access to this content.