The scalar dissipation rate transport in both the corrugated flamelet and thin reaction zone regimes is studied using three-dimensional direct numerical simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. Both flames have comparable turbulent Reynolds number but the flame representing the corrugated flamelet combustion regime has a global Damköhler number, Da>1, whereas the second flame representing the thin reaction zone regime has Da<1. It is demonstrated that the turbulent transport of the scalar dissipation rate and its molecular diffusive transport have strong Da dependence. The contributions of dilatation rate, the turbulence-scalar interaction, the reaction-rate–scalar gradient interaction, and the dissipation processes have leading order contributions for both the flames. However, the turbulence-scalar interaction dissipates scalar gradients in the Da>1 flame, while it produces the scalar gradients in the Da<1 flame. Simple algebraic models for the contributions of the various processes noted above to the scalar dissipation rate evolution are proposed and their a priori assessment is carried out with respect to DNS data. These models explicitly have Da and the Karlovitz number Ka dependence, and thus, they can be viewed and used as unified models for both the corrugated flamelet and thin reaction zone regimes. Physical realizability of the modeled scalar dissipation rate transport equation is studied and the model constants obtained by using the DNS data sets are shown to satisfy the realizability condition.

1.
R. W.
Bilger
, “
Some aspects of scalar dissipation
,”
Flow, Turbul. Combust.
72
,
93
(
2004
).
2.
R.
Borghi
and
D.
Dutoya
, “
On the scales of the fluctuations in turbulent combustion
,”
Sym. (Int.) Combust., [Proc.]
17
,
235
(
1978
).
3.
T.
Mantel
and
R.
Borghi
, “
A new model of premixed wrinkled flame propagation based on a scalar dissipation equation
,”
Combust. Flame
96
,
443
(
1994
).
4.
R.
Borghi
, “
Turbulent premixed combustion: Further discussions on scales of fluctuations
,”
Combust. Flame
80
,
304
(
1990
).
5.
A.
Mura
and
R.
Borghi
, “
Towards an extended scalar dissipation equation for turbulent premixed combustion
,”
Combust. Flame
133
,
193
(
2003
).
6.
N.
Swaminathan
and
K. N. C.
Bray
, “
Effect of dilatation on scalar dissipation in turbulent premixed flames
,”
Combust. Flame
143
,
549
(
2005
).
7.
N.
Swaminathan
and
R.
Grout
, “
Interaction of turbulence and scalar fields in premixed flames
,”
Phys. Fluids
18
,
045102
(
2006
).
8.
K. N. C.
Bray
, “
Turbulent flows with premixed reactants
,” in
Turbulent Reacting Flows
, edited by
P. A.
Libby
and
F. A.
Williams
(
Springer
,
Berlin
,
1980
), pp.
115
183
.
9.
P. A.
Libby
and
K. N. C.
Bray
, “
Implications of the laminar flamelet model in premixed turbulent combustion
,”
Combust. Flame
39
,
33
(
1980
).
10.
S. B.
Pope
, “
The evolution of surfaces in turbulence
,”
Int. J. Eng. Sci.
26
,
445
(
1988
).
11.
S. M.
Candel
and
T. J.
Poinsot
, “
Flame stretch and the balance equation for the flame area
,”
Combust. Sci. Technol.
70
,
1
(
1990
).
12.
L.
Vervisch
,
E.
Bidaux
,
K. N. C.
Bray
, and
W.
Kollmann
, “
Surface density function in premixed turbulent combustion modelling, similarities between probability density function and flame surface approaches
,”
Phys. Fluids
7
,
2496
(
1995
).
13.
M.
Boger
,
D.
Veynante
,
H.
Boughanem
, and
A.
Trouvé
, “
Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion
,”
Sym. (Int.) Combust., [Proc.]
27
,
917
(
1998
).
14.
K. N. C.
Bray
, “
Studies of the turbulent burning velocity
,”
Proc. R. Soc. London, Ser. A
431
,
315
(
1990
).
15.
N.
Swaminathan
and
R.
Bilger
, “
Analyses of conditional moment closure for turbulent premixed flames
,”
Combust. Theory Modell.
5
,
241
(
2001
).
16.
S. B.
Pope
, “
PDF methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
(
1985
).
17.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
Cambridge
,
2000
).
18.
N.
Chakraborty
and
N.
Swaminathan
, “
Influence of Damköhler number on turbulence-scalar interaction in premixed flames. Part I. Physical insight
,”
Phys. Fluids
19
,
045103
(
2007
).
19.
N.
Chakraborty
and
N.
Swaminathan
, “
Influence of Damköhler number on turbulence-scalar interaction in premixed flames. Part II. Model development
,”
Phys. Fluids
19
,
045104
(
2007
).
20.
C. J.
Rutland
and
R. S.
Cant
,
Proceedings of the Summer Program
(
Centre for Turbulence Research
,
Stanford
,
1994
), p.
75
.
21.
T.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulation of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
22.
K. N. C.
Bray
,
P. A.
Libby
, and
J. B.
Moss
, “
Unified modelling approach for premixed turbulent combustion. Part I. General formulation
,”
Combust. Flame
61
,
87
(
1985
).
23.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” NASA Technical Memorandum No. 81315,
1981
.
24.
G. K.
Batchelor
and
A. A.
Townsend
, “
Decay of turbulence in the final period
,”
Proc. R. Soc. London, Ser. A
194
,
527
(
1948
).
25.
A. A.
Wray
, “
Minimal storage time advancement schemes for spectral methods
,” NASA Ames Research Center, Report No. MS 202 A-1,
1990
.
26.
D. C.
Haworth
and
T. J.
Poinsot
, “
Numerical simulations of Lewis number effects in turbulent premixed flames
,”
J. Fluid Mech.
244
,
405
(
1992
).
27.
N.
Peters
,
P.
Terhoeven
,
J. H.
Chen
, and
T.
Echekki
, “
Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames
,”
Sym. (Int.) Combust., [Proc.]
27
,
833
(
1998
).
28.
T.
Echekki
and
J. H.
Chen
, “
Unsteady strain rate and curvature effects in turbulent premixed methane-air flames
,”
Combust. Flame
116
,
184
(
1996
).
29.
N.
Chakraborty
and
S.
Cant
, “
Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet-outlet configuration
,”
Combust. Flame
137
,
129
(
2004
).
30.
N.
Swaminathan
and
R. W.
Bilger
, “
Scalar dissipation, diffusion and dilatation in turbulent H2-air premixed flames with complex chemistry
,”
Combust. Theory Modell.
5
,
429
(
2001
).
31.
F.
O’Young
and
R. W.
Bilger
, “
Scalar gradient and related quantities in turbulent premixed fames
,”
Combust. Flame
109
,
683
(
1997
).
32.
G.
Batchelor
, “
The effect of homogeneous turbulence on material line and surfaces
,”
Proc. R. Soc. London, Ser. A
231
,
349
(
1952
).
33.
R. M.
Kerr
, “
Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence
,”
J. Fluid Mech.
153
,
31
(
1985
).
34.
G.
Ruetsch
and
M.
Maxey
, “
Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence
,”
Phys. Fluids A
3
,
1587
(
1991
).
35.
W. T.
Ashurst
,
A. R.
Kerstein
,
R. M.
Kerr
, and
C. H.
Gibson
, “
Alignment of vorticity and scalar gradient with strain rate in Navier-Stokes turbulence
,”
Phys. Fluids
30
,
2343
(
1987
).
36.
D.
Veynante
,
A.
Trouvé
,
K. N. C.
Bray
, and
T.
Mantel
, “
Gradient and counter-gradient scalar transport in turbulent premixed flames
,”
J. Fluid Mech.
332
,
263
(
1997
).
37.
K. N. C.
Bray
and
N.
Swaminathan
, “
Scalar dissipation rate and flame surface density in premixed turbulent combustion
,”
C. R. Mec.
334
,
466
(
2006
).
38.
T.
Poinsot
,
D.
Veynante
, and
S.
Candel
, “
Quenching processes and premixed turbulent combustion diagrams
,”
J. Fluid Mech.
228
,
561
(
1991
).
39.
R. W.
Bilger
, “
Some aspects of scalar dissipation
,”
Flow, Turbul. Combust.
72
,
93
(
2004
).
40.
J. W.
Rogerson
and
N.
Swaminathan
, “
Correlation between dilatation and scalar dissipation in turbulent premixed flames
,”
Proceedings of the Third European Combustion Meeting
(ECM2007),
Chania, Greece
,
2007
, edited by
G.
Skevis
(
Combustion Institute
,
Chania
,
2007
), 9-9.
41.
R. S.
Cant
,
S. B.
Pope
, and
K. N. C.
Bray
, “
Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion
,”
Sym. (Int.) Combust., [Proc.]
23
,
809
(
1990
).
42.
E. R.
Hawkes
and
R. S.
Cant
, “
Physical and numerical realizability requirements for flame surface density approaches to large-eddy and reynolds averaged simulation of premixed turbulent combustion
,”
Combust. Theory Modell.
5
,
699
(
2001
).
You do not currently have access to this content.