The influence of rotation on the structure and dynamics of sheared turbulence is investigated using a series of direct numerical simulations. Five cases are considered: turbulent shear flow without rotation, with moderate rotation, and with strong rotation, where the rotation configuration is either parallel or antiparallel. For moderate rotation rates an antiparallel configuration increases the growth of the turbulent kinetic energy, while the parallel case reduces the growth as compared to the nonrotating case. For strong rotation rates decay of the energy is observed, linear effects dominate the flow, and the vorticity probability density functions tend to become Gaussian. Visualizations of vorticity show that the inclination angle of the vortical structures depends on the rotation rate and orientation. Coherent vortex extraction, based on the orthogonal wavelet decomposition of vorticity, is applied to split the flow into coherent and incoherent parts. It was found that the coherent part preserves the vortical structures using only a few percent of the degrees of freedom. The incoherent part was found to be structureless and of mainly dissipative nature. With increasing rotation rates, the number of wavelet modes representing the coherent vortices decreases, indicating an increased coherency of the flow. Restarting the direct numerical simulation with the filtered fields confirms that the coherent component preserves the temporal dynamics of the total flow, while the incoherent component is of dissipative nature.

1.
P.
Bradshaw
, “
The analogy between streamline curvature and buoyancy in turbulent shear flow
,”
J. Fluid Mech.
36
,
177
(
1969
).
2.
D. J.
Tritton
, “
Stabilization and destabilization of turbulent shear-flow in a rotating fluid
,”
J. Fluid Mech.
241
,
503
(
1992
).
3.
G.
Brethouwer
, “
The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulations
,”
J. Fluid Mech.
542
,
305
(
2005
).
4.
A.
Salhi
, “
Similarities between rotation and stratification effects on homogeneous shear flow
,”
Theor. Comput. Fluid Dyn.
15
,
339
(
2002
).
5.
A.
Salhi
and
C.
Cambon
, “
Advances in rapid distortion theory: from rotating shear flows to the baroclinic instability
,”
J. Appl. Mech.
73
,
449
(
2006
).
6.
T.
Gerz
,
U.
Schumann
, and
S. E.
Elghobashi
, “
Direct numerical simulation of stratified homogeneous turbulent shear flows
,”
J. Fluid Mech.
200
,
563
(
1989
).
7.
S. E.
Holt
,
J. R.
Koseff
, and
J. H.
Ferziger
, “
A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence
,”
J. Fluid Mech.
237
,
499
(
1992
).
8.
F. G.
Jacobitz
,
S.
Sarkar
, and
C. W.
Van Atta
, “
Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow
,”
J. Fluid Mech.
342
,
231
(
1997
).
9.
U.
Schumann
and
T.
Gerz
, “
Turbulent mixing in stably stratified shear flows
,”
J. Appl. Meteorol.
34
,
33
(
1995
).
10.
E. C.
Itsweire
,
J. R.
Koseff
,
D. A.
Briggs
, and
J. H.
Ferziger
, “
Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean
,”
J. Phys. Oceanogr.
23
,
1508
(
1993
).
11.
12.
F. G.
Jacobitz
, “
A comparison of the turbulence evolution in a stratified fluid with vertical or horizontal shear
,”
J. Turbul.
2
,
55
(
2002
).
13.
M.
Farge
, “
Wavelet transforms and their applications to turbulence
,”
Annu. Rev. Fluid Mech.
24
,
395
(
1992
).
14.
C.
Meneveau
, “
Analysis of turbulence in the orthonormal wavelet representation
,”
J. Fluid Mech.
232
,
469
(
1991
).
15.
M.
Farge
,
K.
Schneider
, and
N.
Kevlahan
, “
Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis
,”
Phys. Fluids
11
,
2187
(
1999
).
16.
M.
Farge
and
K.
Schneider
, “
Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets
,”
Flow, Turbul. Combust.
66
,
393
(
2001
).
17.
M.
Farge
,
G.
Pellegrino
,
K.
Schneider
,
A.
Wray
, and
B.
Rogallo
, “
Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions
,”
Phys. Fluids
15
,
2886
(
2003
).
18.
D. E.
Goldstein
and
O. V.
Vasilyev
, “
Stochastic coherent adaptive large eddy simulation method
,”
Phys. Fluids
16
,
2497
(
2004
).
19.
N.
Okamoto
,
K.
Yoshimatsu
,
K.
Schneider
,
M.
Farge
, and
Y.
Kaneda
, “
Coherent vortices in high resolution direct numerical simulation of homogeneous, isotropic turbulence: A wavelet viewpoint
,”
Phys. Fluids
19
,
115109
(
2007
).
20.
A.
Cohen
, in
Handbook of Numerical Analysis
, edited by
P. G.
Ciarlet
and
J. L.
Lions
(
Elsevier
,
Amsterdam
,
2000
), Vol.
7
.
21.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” NASA Report No. TM 81315 (
1981
).
22.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1988
).
23.
F. G.
Jacobitz
and
S.
Sarkar
, “
On the shear number effect in stratified shear flow
,”
Theor. Comput. Fluid Dyn.
13
,
171
(
1999
).
24.
L. H.
Shih
,
J. R.
Koseff
,
J. H.
Ferziger
, and
C. R.
Rehmann
, “
Scaling and parameterization of stratified homogeneous turbulent shear flow
,”
J. Fluid Mech.
412
,
1
(
2000
).
25.
M.
Farge
,
G.
Pellegrino
, and
K.
Schneider
, “
Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets
,”
Phys. Rev. Lett.
87
,
054501
(
2001
).
26.
I.
Daubechies
,
Ten Lectures on Wavelets
(
SIAM
,
Philadelphia
,
1992
).
27.
D.
Donoho
and
I.
Johnstone
, “
Ideal spatial adaptation via wavelet shrinkage
,”
Biometrika
81
,
425
(
1994
).
28.
A.
Azzalini
,
M.
Farge
, and
K.
Schneider
, “
Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold
,”
Appl. Comput. Harmon. Anal.
18
,
177
(
2005
).
29.
M.
Farge
,
G.
Goirand
,
Y.
Meyer
,
F.
Pascal
, and
M. V.
Wickerhauser
, “
Improved predictability of two-dimensional turbulent flows using wavelet packet compression
,”
Fluid Dyn. Res.
10
,
229
(
1992
).
30.
K.
Schneider
,
M.
Farge
,
G.
Pellegrino
, and
M.
Rogers
, “
Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets
,”
J. Fluid Mech.
534
,
39
(
2005
).
You do not currently have access to this content.