The role of non-normality and nonlinearity in thermoacoustic interaction in a Rijke tube is investigated in this paper. The heat release rate of the heating element is modeled by a modified form of King’s law. This fluctuating heat release from the heating element is treated as a compact source in the one-dimensional linear model of the acoustic field. The temporal evolution of the acoustic perturbations is studied using the Galerkin technique. It is shown that any thermoacoustic system is non-normal. Non-normality can cause algebraic growth of oscillations for a short time even though the eigenvectors of the system could be decaying exponentially with time. This feature of non-normality combined with the effect of nonlinearity causes the occurrence of triggering, i.e., the thermoacoustic oscillations decay for some initial conditions whereas they grow for some other initial conditions. If a system is non-normal, then there can be large amplification of oscillations even if the excited frequency is far from the natural frequency of the system. The dependence of transient growth on time lag and heater positions is studied. Such amplifications (pseudoresonance) can be studied using pseudospectra, as eigenvalues alone are not sufficient to predict the behavior of the system. The geometry of pseudospectra can be used to obtain upper and lower bounds on the growth factor, which provide both necessary and sufficient conditions for the stability of a thermoacoustic system.

1.
K. R.
McManus
,
T.
Poinsot
, and
S. M.
Candel
, “
A review of active control of combustion instabilities
,”
Prog. Energy Combust. Sci.
19
,
1
(
1993
).
2.
J. W. S.
Rayleigh
, “
The explanation of certain acoustic phenomena
,”
Nature (London)
18
,
319
(
1878
).
3.
H. G.
Yoon
,
J.
Peddieson
, and
K. R.
Purdy
, “
Nonlinear response of a generalized Rijke tube
,”
Int. J. Eng. Sci.
39
,
1707
(
2001
).
4.
B. T.
Zinn
and
T. C.
Lieuwen
, “
Combustion instabilities: Basic concepts
,” in
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, edited by
T. C.
Lieuwen
and
V.
Yang
,
Progress in Astronautics and Aeronautics
Vol.
210
(
AIAA
,
Reston, VA
,
2005
).
5.
M. A.
Heckl
, “
Nonlinear acoustic effects in the Rijke tube
,”
Acustica
72
,
63
(
1990
).
6.
C. C.
Hantschk
and
D.
Vortmeyer
, “
Numerical simulation of self-excited thermo-acoustic instabilities in a Rijke tube
,”
J. Sound Vib.
277
,
511
(
1999
).
7.
K. I.
Matveev
, “
Energy consideration of the nonlinear effects in a Rijke tube
,”
J. Fluids Struct.
18
,
783
(
2003
).
8.
K. I.
Matveev
, “
Thermo-acoustic instabilities in the Rijke tube: Experiments and modeling
,” Ph.D. thesis,
California Institute of Technology
,
2003
.
9.
K. I.
Matveev
and
F. E. C.
Culick
, “
A study of the transition to the instability in a Rijke tube with axial temperature gradient
,”
J. Sound Vib.
264
,
689
(
2003
).
10.
K.
Balasubramanian
and
R. I.
Sujith
, “
The role of non-normality in combustion-acoustic interactions in diffusion flames
,” AIAA Paper No. 2007-0567,
45th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, 8–11 January
2007
.
11.
K.
Balasubramanian
and
R. I.
Sujith
, “
Non-normality and nonlinearity in combustion-acoustic interactions in diffusion flames
,”
J. Fluid Mech.
594
,
29
(
2007
).
12.
F.
Nicoud
,
L.
Benoit
,
C.
Sensiau
, and
T.
Poinsot
, “
Acoustic modes in combustors with complex impedances and multidimensional active flames
,”
AIAA J.
45
,
426
(
2007
).
13.
J. S.
Baggett
,
T. A.
Driscoll
, and
L. N.
Trefethen
, “
A mostly linear model of transition to turbulence
,”
Phys. Fluids
7
,
833
(
1995
).
14.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
(
1993
).
15.
T.
Gebgart
and
S.
Grossmann
, “
Chaos transition despite linear stability
,”
Phys. Rev. E
50
,
3705
(
1994
).
16.
W.
Kerner
, “
Large scale complex eigenvalue problems
,”
J. Comput. Phys.
85
,
1
(
1989
).
17.
B. F.
Farrell
, “
Optimal excitation of baroclinic waves
,”
J. Atmos. Sci.
46
,
1193
(
1989
).
18.
D. S.
Henningson
and
P. J.
Schmid
, “
Vector eigenfunctions for plane channel flows
,”
Stud. Appl. Math.
87
,
15
(
1992
).
19.
J.
Kopitz
and
W.
Polifke
, “
CFD based analysis of thermoacoustic instabilities by determination of open-loop-gain
,”
12th International Congress on Sound and Vibration
, The International Institute of Acoustics and Vibration,
Lisbon
(
2005
), Paper No. 389.
20.
L.
Meirovitch
,
Analytical Methods in Vibrations
(
Macmillan
,
New York
,
1967
), Chap. 6.
21.
A. P.
Dowling
, “
The calculation of thermoacoustic oscillations
,”
J. Sound Vib.
180
,
557
(
1995
).
22.
W.
Polifke
, personal communication (
2006
).
23.
N.
Ananthkrishnan
,
S.
Deo
, and
F. E. C.
Culick
, “
Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber
,”
Combust. Sci. Technol.
177
,
221
(
2005
).
24.
J. M.
Wicker
,
W. D.
Greene
,
S. I.
Kim
, and
V.
Yang
, “
Triggering of longitudinal combustion instabilities in rocket motors: Nonlinear combustion response
,”
J. Propul. Power
12
,
1148
(
1996
).
25.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
26.
S. C.
Reddy
and
L. N.
Trefethen
, “
Pseudospectra of the convection-diffusion operator
,”
SIAM J. Appl. Math.
54
,
1634
(
1994
).
27.
L. N.
Trefethen
, “
Pseudospectra of linear operators
,”
SIAM Rev.
39
,
383
(
1997
).
28.
L. N.
Trefethen
and
M.
Embree
,
Spectra and Pseudospectra
(
Princeton University Press
,
Princeton
,
2005
).
You do not currently have access to this content.