A newly developed direct numerical simulation method has been used to study the dynamics of nonisothermal cylindrical particles in particulate flows. The momentum and energy transfer equations are solved to compute the effects of heat transfer in the sedimentation of particles. Among the effects examined is the drag force on nonisothermal particles, which we found strongly depends on the Reynolds and Grashof numbers. It was observed that heat advection between hotter particles and fluid causes the drag coefficient of particles to significantly increase at relatively low Reynolds numbers. For Grashof number of 100, the drag enhancement effect diminishes when the Reynolds number exceeds 50. On the contrary, heat advection with colder particles reduces the drag coefficient for low and medium Reynolds number (Re<50) for Grashof number of 100. We used this numerical method to study the problem of a pair of hot particles settling in a container at different Grashof numbers. In isothermal cases, such a pair of particles would undergo the well-known drafting-kissing-tumbling (DKT) motion. However, it was observed that the buoyancy currents induced by the hotter particles reverse the DKT motion of the particles or suppress it altogether. Finally, the sedimentation of a circular cluster of 172 particles in an enclosure at two different Grashof numbers was studied and the main features of the results are presented.

1.
G. G.
Stokes
, “
On the theories of internal friction of the fluids in motion
,”
Trans. Cambridge Philos. Soc.
8
,
287
(
1845
).
2.
P. N.
Segrè
,
F.
Liu
,
P.
Umbanhowar
, and
D. A.
Weitz
, “
An effective gravitational temperature for sedimentation
,”
Nature (London)
409
,
594
(
2001
).
3.
A. J. C.
Ladd
, “
Sedimentation of homogeneous suspensions of non-Brownian spheres
,”
Phys. Fluids
9
,
491
(
1997
).
4.
Multiphase Flow Handbook
, edited by
C. T.
Crowe
(
Taylor and Francis
,
Washington
,
2005
).
5.
E. E.
Michaelides
,
Particles, Bubbles and Drops—Their Motion, Heat and Mass Transfer
(
World Scientific
,
Hackensack, NJ
,
2006
).
6.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall
,”
Chem. Eng. Sci.
22
,
637
(
1967
).
7.
R. H.
Davis
, “
Sedimentation of axisymmetric particles in shear flows
,”
Phys. Fluids A
3
,
2051
(
1991
).
8.
E. E.
Michaelides
and
Z.-G.
Feng
, “
The equation of motion of a small viscous sphere in an unsteady flow with interface slip
,”
Int. J. Multiphase Flow
21
,
315
(
1995
).
9.
A.
Acrivos
and
T. E.
Taylor
, “
Heat and mass transfer from single spheres in Stokes flow
,”
Phys. Fluids
5
,
387
(
1962
).
10.
A.
Acrivos
and
J. D.
Goddard
, “
Asymptotic expansions for laminar convection heat and mass transfer
,”
J. Fluid Mech.
23
,
273
(
1965
).
11.
A.
Acrivos
, “
A note on the rate of heat and mass transfer from a small particle freely suspended in a linear shear field
,”
J. Fluid Mech.
98
,
299
(
1980
).
12.
L. G.
Leal
,
Laminar Flow and Convective Transport Processes
(
Butterworth-Heineman
,
Boston
,
1992
).
13.
E. E.
Michaelides
and
Z.-G.
Feng
, “
Heat transfer from a rigid sphere in a non-uniform flow and temperature field
,”
Int. J. Heat Mass Transfer
37
,
2069
(
1994
).
14.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Unsteady heat transfer from a sphere at finite Peclet numbers
,”
J. Fluids Eng.
118
,
96
(
1996
).
15.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Transient heat transfer from a particle with arbitrary shape and motion
,”
J. Heat Transfer
120
,
674
(
1998
).
16.
F. E.
Fendell
, “
Laminar natural convection about an isothermally heated sphere at small Grashof numbers
,”
J. Fluid Mech.
34
,
163
(
1968
).
17.
F.
Geoola
and
A. R. H.
Cornish
, “
Numerical solution of steady-state free convective heat transfer from a solid sphere
,”
Int. J. Heat Mass Transfer
24
,
1369
(
1981
).
18.
P.
Zhao
,
J. C.
Heinrich
and
D. R.
Poirier
, “
Numerical simulation of crystal growth in three dimensions using a sharp-interface finite element method
,”
Int. J. Numer. Methods Eng.
71
,
25
(
2007
).
19.
C. A.
Hibber
and
B.
Gebhart
, “
Mixed convection from a sphere at small Reynolds and Grashof numbers
,”
J. Fluid Mech.
38
,
137
(
1969
).
20.
E.
Bar-Ziv
,
B.
Zhao
,
E.
Mograbi
,
D.
Katoshevski
, and
G.
Ziskind
, “
Experimental validation of the Stokes law at nonisothermal conditions
,”
Phys. Fluids
14
,
2015
(
2002
).
21.
E.
Mograbi
and
E.
Bar-Ziv
, “
Dynamics of a spherical particle in mixed convection field
,”
J. Aerosol Sci.
36
,
387
(
2005
).
22.
H.
Gan
,
J. Z.
Chang
,
J. J.
Feng
, and
H. H.
Hu
, “
Direct numerical simulation of the sedimentation of solid particles with thermal convection
,”
J. Fluid Mech.
481
,
385
(
2003
).
23.
Z.
Yu
,
X.
Shao
, and
A.
Wachs
, “
A fictitious domain method for particulate flows with heat transfer
,”
J. Comput. Phys.
217
,
424
(
2006
).
24.
Z.-G.
Feng
and
E. E.
Michaelides
, “
A direct numerical simulation method for the study of heat/mass and momentum interactions in particulate flows
,” in
Sixth International Conference on Multiphase Flow (ICMF-2007), Universitat Halle Wittenberg, Leipzig, 2007
, edited by
M.
Sommerfeld
(
University of Wittenberg
,
Leipzig
,
2007
).
25.
P. F.
Incropera
and
C. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
New York
,
1985
).
26.
M.
Kaviani
,
Principles of Convective Heat Transfer
(
Springer-Verlag
,
New York
,
1994
).
27.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
(
1977
).
28.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems
,”
J. Comput. Phys.
194
,
602
(
2004
).
29.
J.
Mohd-Yusof
, “
Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries
,” in
Annual Research Briefs
,
Center for Turbulence Research, Stanford University
,
Palo Alto, CA
,
1997
.
30.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Proteus: A direct forcing method in the simulations of particulate flow
,”
J. Comput. Phys.
202
,
20
(
2005
).
31.
J.
Feng
,
H. H.
Hu
, and
D. D.
Joseph
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation
,”
J. Fluid Mech.
261
,
95
(
1994
).
32.
J.
Tritton
, “
Experiments on the flow past a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
6
,
547
(
1959
).
33.
N. A.
Patankar
,
P.
Singh
,
D. D.
Joseph
,
R.
Glowinski
, and
T.-W.
Pan
, “
A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
26
,
1509
(
2000
).
34.
Z.
Zhang
and
A.
Prosperetti
, “
A method for particle simulation
,”
J. Appl. Mech.
70
,
64
(
2003
).
35.
M.
Uhlmann
, “
First experiments with the simulation of particulate flows
,” CIEMAT Technical Report No. 1020,
2003
.
36.
Z.-J.
Xu
and
E. E.
Michaelides
, “
The effect of particle interactions on the sedimentation process
,”
Int. J. Multiphase Flow
29
,
959
(
2003
).
You do not currently have access to this content.